English, asked by Victinee, 9 months ago

Q. If x = a sec A + b tan A and y = a tan A + b sec A, prove that x² - y² = a²- b². ​

Answers

Answered by pulakmath007
77

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

We are aware of the Trigonometric identity that

{sec}^{2} A   - { tan }^{2}  A  = 1

GIVEN

x = a sec A + b tan A  \:  \: and  \:  \:  \: y = a tan A + b sec A

TO PROVE

x² - y² = a²- b²

PROOF

x² - y²

 =  {(a sec A + b tan A)}^{2}  -  {(a tan A + b sec A \: )}^{2}

 =( {a}^{2}  {sec}^{2} A    - 2ab \: sec A  tan A \:  \:  +  {b}^{2} { tan }^{2}  A)  - (  {a}^{2} { tan }^{2}  A + 2ab \:  sec A  tan A\:  +  {b}^{2} {sec}^{2} A )

  =( {a}^{2}  {sec}^{2} A    - 2ab \: sec A  tan A \:  \:  +  {b}^{2} { tan }^{2}  A -  {a}^{2} { tan }^{2}  A  - 2ab \:  sec A  tan A\:   -   {b}^{2} {sec}^{2} A )

 =  {a}^{2} ({sec}^{2} A   - { tan }^{2}  A) -  {b}^{2} ({sec}^{2} A   - { tan }^{2}  A)

  = a² \times 1- b² \times 1

 = a²- b²

Hence proved

Answered by Anonymous
10

Answer:

Given

x = asecθ

Therefore x² = a²sec²θ

Similarly y = btanθ

Hence y² = b²tan²θ

Considering LHS,

x²/a² - y²/b²

= a²sec²θ / a² - b²tan²θ / b²

= sec²θ - tan²θ

= 1 + tan²θ - tan²θ

( Using property 1 + tan²θ = sec²θ )

= 1

= RHS

Therefore LHS = RHS

Hence proved

Similar questions