Math, asked by aburewatkar9520, 1 year ago

Q.if x=root 3+root 2 divided by root 2- root 3 and if y=root 3 - root 2 divided by root 2 + root 3 then find the value of x square +y square - 10 xy.

Answers

Answered by soopriya
3
x = \sqrt{3} + \sqrt{2} \div \sqrt{2} - \sqrt{3}
 = ( \sqrt{3} + \sqrt{2} )( \sqrt{2} + \sqrt{3} ) \div (\sqrt{2} - \sqrt{3} )( \sqrt{2} + \sqrt{3} )
 {( \sqrt{3} + \sqrt{2} ) }^{2} \div { \sqrt{2} }^{2} - { \sqrt{3} }^{2}
 = (3 + 2 + 2 \sqrt{6} ) \div 2 - 3
 = (5 + 2 \sqrt{6} ) \div - 1
 = - (5 + 2 \sqrt{6} )
 {x}^{2} = {( - (5 + 2 \sqrt{6})) }^{2}
 { (- 5 - 2 \sqrt{6}) }^{2}
 = 25 + 24 + 20 \sqrt{6}

now,
y = \sqrt{3} - \sqrt{2} \div \sqrt{2} + \sqrt{3}
 = ( \sqrt{3} - \sqrt{2} )( \sqrt{2} - \sqrt{3} ) \div ( \sqrt{2} + \sqrt{3} )( \sqrt{2} - \sqrt{3} )
 = \sqrt{6} - 3 - 2 - \sqrt{6} \div { \sqrt{2} }^{2} - { \sqrt{3} }^{2}
 = - 5 \div 2 - 3
 = - 5 \div - 1
 = 5
now,
10xy =10 ( \sqrt{3} + \sqrt{2} \div \sqrt{2} - \sqrt{3} ) \times ( \sqrt{3} - \sqrt{2} \div \sqrt{2} + \sqrt{3} )
 = 10( { \sqrt{3} }^{2} - { \sqrt{2} }^{2} ) \div ( { \sqrt{2} }^{2} - { \sqrt{3} }^{2} )
 = 10(3 - 2) \div (2 - 3)
10(1 \div - 1)
 = 10 \times - 1
 = - 10
now,
x^2+y^2-10xy=
24+25+20root6+5-(-10)
=49+20root6+5+10
=49+15+20root6
=64+20root6

Here's your answer
Similar questions