Math, asked by pappalanookaratnam3, 2 months ago

q If x² + y² =25xy, then prove that a
that 2 log(xty)
Blog 3 et log2 tlogy​

Answers

Answered by Anonymous
38

Answer:

{ \underline{ \large{ \pmb{ \sf{Correct  \: Question... }}}}}

  • If x² + y² = 25xy , Then prove that 2log(x + y) = 3log3 + logx + logy

{ \underline{ \large{ \pmb{ \sf{Solution... }}}}}

 : { \implies{ \sf{ {x}^{2}  +  {y}^{2} = 25xy }}} \\  \\ { \sf{Adding  \: 2xy  \: on  \: both  \: sides}} \\  \\  : { \implies{ \sf{ {x}^{2}  +  {y}^{2}  + 2xy = 25xy + 2xy}}} \\  \\  : { \implies{ \sf{ {(x + y)}^{2}  = 27xy}}} \\  \\ { \sf{Taking \:  Log  \: on \:  both  \: sides}} \\  \\  : { \implies{ \sf{log {(x + y)}^{2} = log27xy }}} \\  \\   : { \implies{ \sf{2log(x + y) = log27 + logx + logy}}} \\  \\   : { \implies{ \sf{2log(x + y) = log {3}^{3}  + logx + logy}}} \\  \\   : { \implies{ \sf{2log(x + y) =3 log 3 + logx + logy}}} \\  \\ \therefore { \pmb{ \sf{Hence  \: Proved}}}

More to know :

  • { \sf{log {a}^{n} = nloga }}

  • { \sf{log(ab) = loga + logb}}

  • { \sf{log1 = 0}}

  • { \sf{ log_{a}(a)  = 1}}

  • { \sf{log \frac{a}{b} = loga - logb }}
Answered by ItzMISSelsa
13

Answer:

CorrectQuestion...

CorrectQuestion...

If x² + y² = 25xy , Then prove that 2log(x + y) = 3log3 + logx + logy

{ \underline{ \large{ \pmb{ \sf{Solution... }}}}}

Solution...

Solution...

\begin{gathered} : { \implies{ \sf{ {x}^{2} + {y}^{2} = 25xy }}} \\ \\ { \sf{Adding \: 2xy \: on \: both \: sides}} \\ \\ : { \implies{ \sf{ {x}^{2} + {y}^{2} + 2xy = 25xy + 2xy}}} \\ \\ : { \implies{ \sf{ {(x + y)}^{2} = 27xy}}} \\ \\ { \sf{Taking \: Log \: on \: both \: sides}} \\ \\ : { \implies{ \sf{log {(x + y)}^{2} = log27xy }}} \\ \\ : { \implies{ \sf{2log(x + y) = log27 + logx + logy}}} \\ \\ : { \implies{ \sf{2log(x + y) = log {3}^{3} + logx + logy}}} \\ \\ : { \implies{ \sf{2log(x + y) =3 log 3 + logx + logy}}} \\ \\ \therefore { \pmb{ \sf{Hence \: Proved}}}\end{gathered}

:⟹x

2

+y

2

=25xy

Adding2xyonbothsides

:⟹x

2

+y

2

+2xy=25xy+2xy

:⟹(x+y)

2

=27xy

TakingLogonbothsides

:⟹log(x+y)

2

=log27xy

:⟹2log(x+y)=log27+logx+logy

:⟹2log(x+y)=log3

3

+logx+logy

:⟹2log(x+y)=3log3+logx+logy

HenceProved

HenceProved

More to know :

{ \sf{log {a}^{n} = nloga }}loga

n

=nloga

{ \sf{log(ab) = loga + logb}}log(ab)=loga+logb

{ \sf{log1 = 0}}log1=0

{ \sf{ log_{a}(a) = 1}}log

a

(a)=1

{ \sf{log \frac{a}{b} = loga - logb }}log

b

a

=loga−logb

Similar questions