q If x² + y² =25xy, then prove that a
that 2 log(xty)
Blog 3 et log2 tlogy
Answers
Answer:
- If x² + y² = 25xy , Then prove that 2log(x + y) = 3log3 + logx + logy
More to know :
Answer:
CorrectQuestion...
CorrectQuestion...
If x² + y² = 25xy , Then prove that 2log(x + y) = 3log3 + logx + logy
{ \underline{ \large{ \pmb{ \sf{Solution... }}}}}
Solution...
Solution...
\begin{gathered} : { \implies{ \sf{ {x}^{2} + {y}^{2} = 25xy }}} \\ \\ { \sf{Adding \: 2xy \: on \: both \: sides}} \\ \\ : { \implies{ \sf{ {x}^{2} + {y}^{2} + 2xy = 25xy + 2xy}}} \\ \\ : { \implies{ \sf{ {(x + y)}^{2} = 27xy}}} \\ \\ { \sf{Taking \: Log \: on \: both \: sides}} \\ \\ : { \implies{ \sf{log {(x + y)}^{2} = log27xy }}} \\ \\ : { \implies{ \sf{2log(x + y) = log27 + logx + logy}}} \\ \\ : { \implies{ \sf{2log(x + y) = log {3}^{3} + logx + logy}}} \\ \\ : { \implies{ \sf{2log(x + y) =3 log 3 + logx + logy}}} \\ \\ \therefore { \pmb{ \sf{Hence \: Proved}}}\end{gathered}
:⟹x
2
+y
2
=25xy
Adding2xyonbothsides
:⟹x
2
+y
2
+2xy=25xy+2xy
:⟹(x+y)
2
=27xy
TakingLogonbothsides
:⟹log(x+y)
2
=log27xy
:⟹2log(x+y)=log27+logx+logy
:⟹2log(x+y)=log3
3
+logx+logy
:⟹2log(x+y)=3log3+logx+logy
∴
HenceProved
HenceProved
More to know :
{ \sf{log {a}^{n} = nloga }}loga
n
=nloga
{ \sf{log(ab) = loga + logb}}log(ab)=loga+logb
{ \sf{log1 = 0}}log1=0
{ \sf{ log_{a}(a) = 1}}log
a
(a)=1
{ \sf{log \frac{a}{b} = loga - logb }}log
b
a
=loga−logb