Math, asked by deepakdkp7237, 8 months ago

Q. if y = sin^(-1){ (a + b cosx) / ( b + a cosx)} then find dy/dx ​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

y =  \sin^{ - 1}  \bigg \{ \frac{a + b \cos(x) }{b + a \cos(x) }  \bigg \} \\

 \implies \frac{dy}{dx} =   \frac{1}{ \sqrt{1 - ( \frac{a + b \cos(x) }{b + a \cos(x) } )^{2}} }. \frac{d}{dx} \bigg \{ \frac{a + b \cos(x) }{b + a \cos(x) }   \bigg \}  \\

 \implies \frac{dy}{dx} =   \frac{b + a \cos(x) }{ \sqrt{(b + a  \cos(x))^{2}  - ( a + b \cos(x)  )^{2}} }.  \bigg \{ \frac{(b + a \cos(x) ).\frac{d}{dx}( a + b \cos(x) ) - (a + b \cos(x) ). \frac{d}{dx}(b + a \cos(x)  )}{(b + a \cos(x) )^{2} }   \bigg \}  \\

 \implies \frac{dy}{dx} =   \frac{1 }{ \sqrt{(b) ^{2}  + (a  \cos(x))^{2}  - ( a) ^{2}   - ( b \cos(x)  )^{2}} }.   \frac{  \{- b \sin(x) (b + a \cos(x) )  + (a \sin(x) ) (a + b \cos(x) ) \}}{(b + a \cos(x) ) }    \\

 \implies \frac{dy}{dx} =   \frac{1 }{ \sqrt{b^{2}  + a^{2}   \cos^{2} (x)  - a ^{2}   -  b^{2}  \cos^{2} (x) } }.   \frac{  \{- b ^{2}  \sin(x)  - ab \sin(x)  \cos(x)   + a ^{2}  \sin(x)  + ab  \sin(x) \cos(x)\}}{(b + a \cos(x) ) }    \\

 \implies \frac{dy}{dx} =   \frac{1 }{ \sqrt{b^{2} \sin^{2} (x)    - a^{2}   \sin^{2} (x)  } }.   \frac{  \{- b ^{2}  \sin(x)     + a ^{2}  \sin(x) \}}{(b + a \cos(x) ) }    \\

 \implies \frac{dy}{dx} =   \frac{- \{ b ^{2}  \sin(x)      -  a ^{2}  \sin(x)  \}}{ (b + a \cos(x) )  \sqrt{b^{2} \sin^{2} (x)    - a^{2}   \sin^{2} (x)  } }   \\

Similar questions