Math, asked by JahnaviS1577, 2 months ago

Q- In the Figure, if PQ || ST, ∠PQR = 110° and ∠RST = 130°, find ∠QRS.



ɴᴏ sᴘᴀᴍs ᴘʟᴢ!​

Attachments:

Answers

Answered by srikanthn711
19

\large \bf \orange {➤ \:  \: Given:-}

In the figure, PQ || ST, <PQR = 110° and <RST = 130°.

 \\

\large \bf \orange {➤ \:  \: To \: find:-}

We have to find <QRS.

 \\

\large \bf \orange {➤ \:  \: Construction:-}

Draw XY || ST and PQ through R.

 \\

\large \bf \orange {➤ \:  \: Solution:-}

Since ST || RV,

<TSR + <SRY = 180° [Interior angles]

130° + <SRY = 180°

<SRY = 50°

Since PQ || RU,

<PQR + <QRX = 180° [Interior angles]

110° + <QRX = 180°

<QRX = 70°

Since XY is a straight line,

<QRX + <QRS + <SRY = 180° [Linear pair]

70° + <QRS + 50° = 180°

120° + <QRS = 180°

<QRS = 60°

Therefore, <QRS = 60°.

 \\

_____________________

All done :)

Attachments:
Answered by BadCaption01
10

\huge{\rm{Required \ Answer :)}}

\orange{\bold{\underline{\underline{Answer:}}}}

\pink{\tt{\therefore{PQR ~is ~60°}}}

\blue{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \purple{\underline \bold{Given :}} \\  \tt:  \implies  {PQ||} {ST}

 \purple{\underline \bold{ :}} \\  \tt:  \implies  {PQR=} {110°}

 \purple{\underline \bold{ :}} \\  \tt:  \implies  {RST=} {130°}

\red{\underline \bold{To \: Find:}} \\  \tt:  \implies QRS~=~?

 \bold{As \: we \: know \: that}

\bf\underline{The~angles~on~the~same~side~of~transversal~is~equal~to~180°}

\bf\blue{According~the~question :} \\

    PQR + QRX = 180°

     QRX = 180° - 110°

      QRX = 70°

\bf\green{In~the~same~way :} \\

    RST + SRY = 180°

    SRY = 180° - 130°

     SRY = 50°

\bf\red{The~linear~pairs~on~the~line~XY -} \\

   QRX + QRS + SRY = 180°

\bf\green{Substituting~their~values -} \\

    QRS = 180° - 70° - 50°

     QRS = 60°

\boxed {\sf {\purple { Therefore~,~QRS ~is~60°.}}}

\bf{\red{▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬}}

Note - Swipe your screen from left to right in order to view the answer completely or proper.

Attachments:
Similar questions