Math, asked by Anonymous, 9 months ago

Q). In Triangle ABC , right- angled at B , if tan A =
 \frac{1}{ \sqrt{3} }
Find the value of :
1). sin A cos C + cos A sin C
2). cos A cos C - sin A sin C ​

Answers

Answered by Anonymous
15

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

In ∆ ABC right angled at B

{\tt{tanA =  \frac{1}{ \sqrt{3} } }}\\

{\bf{\blue{\underline{To:Find:}}}}

 \star{\tt{ \: SinA \: CosC + CosA \: SinC}}\\

 \star{\tt{ \: CosA\:CosC -SinA \: SinC}}\\

{\bf{\blue{\underline{Now:}}}}

In ∆ABC,

\implies{\tt{  {h}^{2}  =  {b}^{2}  +  {p}^{2} }} \\ \\

\implies{\tt{  {h}^{2}  =  {( \sqrt{3} )}^{2}  +  {(1)}^{2} }} \\ \\

\implies{\tt{  {h}^{2}  =  3 + 1 }} \\ \\

\implies{\tt{  {h}^{2}  =  4 }} \\ \\

 \implies{\boxed{ \purple{\tt{  h  =   \sqrt{4}  }}}} \\ \\

\star{ \boxed{\tt{  tanA =  \frac{1}{ \sqrt{3} } =  \frac{p}{b}   }}} \\ \\

\star{ \boxed{\tt{  cosA =  \frac{ \sqrt{3} }{ 2 } =  \frac{b}{h}   }}} \\ \\

\star{ \boxed{\tt{  sinA=  \frac{ 1 }{  2 } =  \frac{p}{b}   }}} \\ \\

\star{ \boxed{\tt{  cosC =  \frac{ 1 }{  2 } =  \frac{b}{h}   }}} \\ \\

\star{ \boxed{\tt{  sinC =  \frac{  \sqrt{3}  }{  2 } =  \frac{p}{b}   }}} \\ \\

Now put the value of these in given equations,

(2).\implies{\tt{  \frac{1}{2} \times  \frac{1}{2} +  \frac{ \sqrt{3} }{2}   \times  \frac{ \sqrt{3} }{2}   }} \\ \\

\implies{\tt{  \frac{1}{4}  +  \frac{3}{4} }} \\ \\

\implies{\tt{  \frac{1 + 3}{4}  }} \\ \\

\implies{\tt{  \frac{4}{4}  }} \\ \\

\implies\boxed{\purple{\tt{  1  \: Ans }}} \\ \\

(2).\implies{\tt{  \frac{ \sqrt{3} }{2}  \times  \frac{1}{2}  -  \frac{1}{2}  \times  \frac{ \sqrt{3} }{2} }} \\ \\

\implies{\tt{  \frac{ \sqrt{3} }{4}  -  \frac{ \sqrt{3} }{4}  }} \\ \\

\implies{\tt{  \frac{ \sqrt{3}  -  \sqrt{3} }{4}   }} \\ \\

\implies{\tt{  \frac{ 0}{4}   }} \\ \\

 \implies \boxed{\purple {\tt{  0 \: Ans   }}} \\ \\

Attachments:

Anonymous: Thanks a lot ...
Answered by ItzArchimedes
47

GIVEN:

  • In ∆ABC right angle at B
  • tanA = 1/√3

TO FIND:

  1. sinA.cosC + cosAsinC
  2. cosAcosC - sinAsinC

If tanA = 1/√3

A = 30°

Because , tan30° = 1/√3 & by comparing A = 30°

Finding Angle C using angle sum property

Angle A + angle B + angle C = 180°

30° + 90° + angle C = 180°

angle = 180° - 120°

Angle C = 60°

SOLUTION 1:

sinAcosC + cosAsinC

It is in the form of sinAsinC + cosAsinC = sin(A +C)

Substituting the values of Angle A & C

→ sin( 30° + 60° )

→ sin90° = 1

SOLUTION 2:

sinAcosC + cosAsinC

It is in the form of cosAcosC - sinAsinC = cos(A+C)

Substituting the values of Angle A & C

→ cos(30° + 60°)

→ cos90° = 0

Answers

★ sinA.cosC + cosAsinC = 1

★ cosAcosC - sinAsinC = 0


Anonymous: Thank you...
Similar questions