Physics, asked by Anonymous, 2 months ago

Q] Integrate by using the Substitution in bracket :

\displaystyle  \sf\int \limits   \dfrac{ {9r}^{2} }{ \sqrt{1 -  {r}^{3} } }  \, dr,(use \: u = 1 -  {r}^{3)}

Answers

Answered by Anonymous
94

Given

 \to \sf \int \dfrac{9 {r}^{2} }{ \sqrt{1 -  {r}^{3} } } dr \\

Using Substitution Method ,Let

 \to \sf \: 1 -  {r}^{3}  = u

Now Differentiate on both side wrt r

 \sf \to \dfrac{d(1 -  {r}^{3} )}{dr}  =  \dfrac{du}{dr}

 \sf \to \:  - 3 {r}^{3 - 1}  =  \dfrac{du}{dr}

 \sf \to \:  - 3 {r}^{2}  =  \dfrac{du}{dr}

 \sf \to \: (3 {r}^{2} )dr =  - du

Now we can write as

 \to \sf3 \int \dfrac{3 {r}^{2} }{ \sqrt{1 -  {r}^{3} } } dr \\

Put the value

  \sf \to \: 3\int \dfrac{ - du}{ \sqrt{u} }  \\

  \sf \to \:  - 3\int \dfrac{  du}{ \sqrt{u} }  \\

\sf \to \:  - 3\int \dfrac{  du}{ {u} {}^{ \frac{1}{2} } }  \\

 \sf \to \:  - 3 \int ({u}^{ \frac{ - 1}{2} } )du \\

 \sf \to \:  - 3 \bigg( \dfrac{u {}^{ \frac{ - 1}{2} + 1 } }{ \dfrac{ - 1}{2}  + 1}  \bigg) + c

 \sf \to \:  - 3 \bigg( \dfrac{ {u}^{ \frac{ - 1 + 2}{2} } }{ \dfrac{ - 1 + 2}{2} }  \bigg) + c

 \sf \to - 3 \bigg( \dfrac{u {}^{ \frac{1}{2} } }{ \dfrac{1}{2} }  \bigg) + c

 \sf \to - 3(2 {u}^{ \frac{ 1 }{2} } ) + c

 \sf \to \:  - 6( \sqrt{u} ) + c

Now put the value

 \to \sf \: 1 -  {r}^{3}  = u

We get

 \sf \to - 6( \sqrt{1 -  {r}^{3} } ) + c

Answer

 \sf \to - 6( \sqrt{1 -  {r}^{3} } ) + c


Anonymous: Perfecttttttt! :0
Answered by princess1224
34

  \sf \: given \:  \:   \boxed{  \sf u = 1 -  {r}^{3} } \\   \ \\ \displaystyle \sf\int \limits \dfrac{ {9r}^{2} }{ \sqrt{1 - {r}^{3} } } \, dr \\  \\  \\  \sf \  \frac{d(1 -  {r}^{3} )}{dr}  =  \frac{du}{dr}  \\  \\  \\  \sf \:  - 3 {r}^{3 - 1}  =  \frac{du}{dr}  \\  \\  \\  \sf \:  - 3 {r}^{2}  =  \frac{du}{dr}  \\  \\  \\  \sf \: 3 \int  \frac{ {3r}^{2} }{  \sqrt{1 -  {r}^{3} } } dr \\  \\  \\  \sf \:  - 3 \int{ \frac{ du}{ \sqrt{u} } }  \\  \\  \\  \sf \:  - 3 \int \:  \frac{du}{  {u}^{ \frac{1}{2} }  }  \\  \\  \ \\  \sf \:  - 3 \int( {u}^{ \frac{ - 1}{2}) } du \\  \\  \\  \sf \:  - 3( \frac{ {u}^{? \frac{ - 1 + 2}{2} } }{ - \frac{1}{2}  + 2} ) + c \\  \\  \\  \sf \:  - 3( \frac{ {u}^{ \frac{1}{2} } }{ \frac{1}{2} } ) + c \\  \\  \\  \sf \:  - 3(2 {u}^{ \frac{1}{2} }  )+ c \\  \\  \\  \sf \:  - 6 \sqrt{u}  + c \\  \\  \sf \: put \: value \: of \: u  : -  \\  \\ \sf \:  - 6 \sqrt{1 -  {r}^{3} }  + c

hope it helps you dear...

Similar questions