Math, asked by Anonymous, 7 months ago

Q:-integrate this and solve
 ∫ \frac{ {sin}^{8} x - {cos}^{8} x}{1 - 2 {sin}^{2}x {cos}^{2} x } dx.......

Answers

Answered by Anonymous
4

\green{\bold{\underline{ ☆        UPSC-ASPIRANT ☆} }}

\red{\bold{\underline{\underline{QUESTION:-}}}}

Q:-integrate this and solve

 ∫ \frac{ {sin}^{8} x - {cos}^{8} x}{1 - 2 {sin}^{2}x {cos}^{2} x } dx

\huge\tt\underline\blue{ANSWER }

------>>>>Here is your answer<<<<--------

∫ \frac{  { {(sin}^{4}x) }^{2}  -  { {(cos}^{4} x)}^{2}  }{1 - 2 {sin}^{2}x {cos}^{2}x  } dx

∫ \frac{ {(sin}^{4} x  +   {cos}^{4} x )( {sin}^{2}x   +  {cos}^{2} x) ( {sin}^{2}x -  {cos}^{2}  x) }{1 - 2 {sin}^{2}x {cos}^{2}x  }dx

∫ \frac{(1 - 2 {sin}^{2} x {cos}^{2}x)( {sin}^{2} x -  {cos}^{2}x)  }{(1 - 2 {sin}^{2} x {cos}^{2}x) } dx

∫ - ( {sin}^{2} x -  {cos}^{2} x)

∫ -  cos2xdx

= -  \frac{sin2x}{2}  + c

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Similar questions