Math, asked by Anonymous, 7 months ago

Q:-integrate this and solve
 ∫ \frac{ {sin}^{8} x - {cos}^{8} x}{1 - 2 {sin}^{2}x {cos}^{2} x } dx...........

Answers

Answered by Anonymous
5

\green{\bold{\underline{ ☆        UPSC-ASPIRANT ☆} }}

\red{\bold{\underline{\underline{QUESTION:-}}}}

Q:-integrate this and solve

 ∫ \frac{ {sin}^{8} x - {cos}^{8} x}{1 - 2 {sin}^{2}x {cos}^{2} x } dx

\huge\tt\underline\blue{ANSWER }

------>>>>Here is your answer<<<<--------

∫ \frac{  { {(sin}^{4}x) }^{2}  -  { {(cos}^{4} x)}^{2}  }{1 - 2 {sin}^{2}x {cos}^{2}x  } dx

∫ \frac{ {(sin}^{4} x  +   {cos}^{4} x )( {sin}^{2}x   +  {cos}^{2} x) ( {sin}^{2}x -  {cos}^{2}  x) }{1 - 2 {sin}^{2}x {cos}^{2}x  }dx

∫ \frac{(1 - 2 {sin}^{2} x {cos}^{2}x)( {sin}^{2} x -  {cos}^{2}x)  }{(1 - 2 {sin}^{2} x {cos}^{2}x) } dx

∫ - ( {sin}^{2} x -  {cos}^{2} x)

∫ -  cos2xdx

= -  \frac{sin2x}{2}  + c

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Answered by Anonymous
2

\frac{Sin⁸x - Cos⁸x}{1 - 2Sin²x*Cos²x}

\frac{(Sin⁴x-Cos⁴x)(Sin⁴x + Cos⁴x)}{1 - 2Sin²x*Cos²x}

\frac{(Sin²x+Cos²x)(Sin²x-Cos²x)(Sin⁴x+Cos⁴x)}{1 - 2Sin²x*Cos²x}

\frac{(Sin²x - Cos²x)(Sin⁴x + Cos⁴x)}{1 - 2Sin²x*Cos²x}

\frac{(Sin²x - Cos²x)[(Sin²x + Cos²x)² - 2Sin²x*Cos²x]}{(1 - 2Sin²x*Cos²x)}

\frac{(Sin²x - Cos²x)(1 - 2Sin²x*Cos²x)}{(1 - 2Sin²x*Cos²x)}

(Sin²x - Cos²x)

 Now ,

 Integration \: of \: (Sin²x - Cos²x)dx

 Integration \: of \: -(Cos²x - Sin²x)dx

 Integration \: of \: - Cos2x*dx

=&gt; \frac{-Sin2x}{2} + c

Similar questions