Math, asked by krishnachauhanmpp, 10 months ago

Q. Integration of 1/(cosec x -1) with respect to x . It's urgent.

Answers

Answered by ihrishi
3

Answer:

 \int \frac{1}{cosec \: x - 1} dx \\  \\  =  \int \frac{1}{ \frac{1}{sin \: x } - 1} dx  \\  \\ =  \int \frac{sin \: x}{1 - sin \: x} dx  \\  \\=  \int \frac{sin \: x}{(1 - sin \: x)}  \times  \frac{(1  + sin \: x)}{(1  + sin \: x)} dx  \\  \\=  \int \frac{sin \: x +  {sin}^{2} \: x }{(1 - sin^{2}  \: x)}   dx  \\  \\=  \int \frac{sin \: x +  {sin}^{2} \: x }{ cos^{2}  \: x}   dx  \\  \\=  \int(  \frac{sin \: x}{cos^{2}  \: x} +  \frac{{sin}^{2} \: x }{ cos^{2}  \: x} )  dx  \\  \\=  \int( sec \: x \: tan \: x+  tan^{2}  \: x)  dx  \\  \\  =  \int(sec \: x \: tan \: x+  sec^{2} \: x - 1)  dx  \\  \\= \int \: sec \: x \: tan \: x \: dx + \int \: sec^{2}  \: x  \: dx -  \int \: 1 \: dx \\  \\  = sec \: x \:  + tan \: x - x + c \\  \\  \implies \\  \\   \purple{{\int \frac{1}{cosec \: x - 1}  \: dx  }}  \purple{{= sec \: x \:  + tan \: x - x + c }}\\

Similar questions