Math, asked by aryankalpanshapbakzl, 1 year ago

q is a prime number then prove that root q is a irrational number

Answers

Answered by VilokNayak
5
HOLA

=================

let \: us \: assume \:  \sqrt{q \: } \: as \: rational \\  \\  \sqrt{q}   \:  =   \frac{a}{b}  \\  \\ square \: on \: both \: sides \\  \\ (q) {}^{2}  = ( \:  \frac{a}{b}) { }^{2}   \\  \\  \\ q {}^{2}  =  \:  \frac{a {}^{2} }{b {}^{2} } \\  \\ qb {}^{2}   =  \: a {}^{2}  \\  \\ q \: divides \: a { }^{2}  \\  \\ q \: divdes \: a \\  \\ therefore \:  \sqrt{q}  \: is \: irrational

==================

HOPE U UNDERSTAND ❤❤❤

aryankalpanshapbakzl: Thanks ❤❤
VilokNayak: pleasure
Similar questions