Q . Let a × b denote the length of the hypotenuse of a right-angled triangle whose remaining two sides have lengths a, b. If (12 × 16) × k = 25, then find the value of k.
please let me know the answer
# answer needed with explanation
# no spamming
Answers
Since denotes the length of the hypotenuse of the right triangle having perpendicular sides and we have,
We see are always positive since they're lengths of sides of a right triangle.
So that,
Given,
From (1),
By definition,
Hence 15 is the answer.
Answer:
15
Step-by-step explanation:
Since \sf{a\ast b}a∗b denotes the length of the hypotenuse of the right triangle having perpendicular sides \sf{a}a and \sf{b,}b, we have,
\displaystyle\longrightarrow\sf{a\ast b=\sqrt{a^2+b^2}}⟶a∗b=a2+b2
We see \sf{a,\ b,\ a*b}a, b, a∗b are always positive since they're lengths of sides of a right triangle.
So that,
\displaystyle\longrightarrow\sf{12*16=\sqrt{12^2+16^2}}⟶12∗16=122+162
\displaystyle\longrightarrow\sf{12*16=\sqrt{144+256}}⟶12∗16=144+256
\displaystyle\longrightarrow\sf{12*16=\sqrt{400}}⟶12∗16=400
\displaystyle\longrightarrow\sf{12*16=20\quad\quad\dots(1)}⟶12∗16=20…(1)
Given,
\displaystyle\longrightarrow\sf{(12*16)*k=25}⟶(12∗16)∗k=25
From (1),
\displaystyle\longrightarrow\sf{20*k=25}⟶20∗k=25
By definition,
\displaystyle\longrightarrow\sf{\sqrt{20^2+k^2}=25}⟶202+k2=25
\displaystyle\longrightarrow\sf{20^2+k^2=25^2}⟶202+k2=252
\displaystyle\longrightarrow\sf{400+k^2=625}⟶400+k2=625
\displaystyle\longrightarrow\sf{k^2=225}⟶k2=225
\displaystyle\longrightarrow\sf{\underline{\underline{k=15}}}⟶k=15
Hence 15 is the answer.