Math, asked by sneha0311, 9 months ago

Q. Let k = 1+ 11+ 111 + ........up to 50 terms. Find thousandth place digit in k.

please tell me the answer with explanation

Answers

Answered by shadowsabers03
12

So we are given,

\displaystyle\longrightarrow\sf{k=1+11+111+1111+\,\dots\dots50\ terms}

Or,

\displaystyle\longrightarrow\sf{k=1+11+111+1111+\,\dots\dots\,+\underbrace{\sf{111\dots111}}_{50}}

I just divide and multiply 9 to it. Then I get,

\displaystyle\longrightarrow\sf{k=\dfrac{1}{9}\times9[\,1+11+111+1111+\,\dots\dots\,+\underbrace{\sf{111\dots111}}_{50}\,]}

\displaystyle\longrightarrow\sf{k=\dfrac{1}{9}\,[\,9+99+999+9999+\,\dots\dots\,+\underbrace{\sf{999\dots999}}_{50}\,]}

But each term can be written as,

\displaystyle\longrightarrow\sf{k=\dfrac{1}{9}\,[\,(10-1)+(100-1)+(1000-1)+\,\dots\,+(1\underbrace{\sf{000\dots000}}_{50}-1)\,]}

\displaystyle\longrightarrow\sf{k=\dfrac{1}{9}\,[\,10-1+10^2-1+10^3-1+\,\dots\,+10^{50}-1\,]}

\displaystyle\longrightarrow\sf{k=\dfrac{1}{9}\,[\,10+10^2+10^3+\,\dots\,+10^{50}-(\underbrace{\sf{1+1+1+\,\dots\,+1}}_{50})\,]}

\displaystyle\longrightarrow\sf{k=\dfrac{1}{9}\,[\,10+10^2+10^3+\,\dots\,+10^{50}-50\,]\quad\quad\dots(1)}

Consider the geometric series \sf{10+10^2+10^3+\,\dots\,+10^{50}.}

  • \sf{a=10\quad;\quad r=10\quad;\quad n=50}

Then,

\displaystyle\longrightarrow\sf{10+10^2+10^3+\,\dots\,+10^{50}=\dfrac{10\,\left(10^{50}-1\right)}{10-1}}

\displaystyle\longrightarrow\sf{10+10^2+10^3+\,\dots\,+10^{50}=\dfrac{10}{9}\,\left(10^{50}-1\right)}

Then (1) becomes,

\displaystyle\longrightarrow\sf{k=\dfrac{1}{9}\left[\dfrac{10}{9}\left(\,10^{50}-1\right)-50\right]}

\displaystyle\longrightarrow\sf{k=\dfrac{1}{9}\left[\dfrac{10^{51}-10}{9}-50\right]}

\displaystyle\longrightarrow\sf{k=\dfrac{10^{51}-10-450}{81}}

\displaystyle\longrightarrow\sf{k=\dfrac{10^{51}-460}{81}}

But we see that,

\displaystyle\longrightarrow\sf{k=\dfrac{1\overbrace{\sf{000\dots000}}^{51}-460}{81}}

We separate last three zeroes in \sf{10^{51}} from the other 48 zeroes.

\displaystyle\longrightarrow\sf{k=\dfrac{1\overbrace{\sf{000\dots000}}^{48}000-460}{81}}

So that, on subtracting \sf{460} from \sf{10^{51},} we get,

\displaystyle\longrightarrow\sf{k=\dfrac{\overbrace{\sf{999\dots999}}^{48}540}{81}}

\displaystyle\longrightarrow\sf{k=\dfrac{\overbrace{\sf{111\dots111}}^{48}060}{9}}

And from that 48 ones, let me separate 9 consecutive ones as each group from left, leaving the three right most ones alone. Then we see,

\displaystyle\longrightarrow\sf{k=\dfrac{\overbrace{\sf{\overbrace{\sf{111\dots111}}^{9}\overbrace{\sf{111\dots111}}^{9}\dots\dots\overbrace{\sf{111\dots111}}^{9}}}^{5}111060}{9}\quad\quad\dots(2)}

The reason for taking 9 consecutive ones as a group is due to the fact that,

  • \sf{111111111=9\times12345679}

But I take \sf{012345679,} since \sf{111111111} has 9 digits.

And what about the remaining \sf{111060\,?}

  • \sf{111060=9\times12340}

But I take \sf{012340,} since \sf{111060} has 6 digits.

Actually we have only to consider this \sf{111060} only, which on division by 9 gives the thousands digit of k.

\displaystyle\longrightarrow\sf{\dfrac{111060}{9}=12340}

The thousands digit of \sf{12340} is the same as that of k.

Hence 2 is the answer.

[Note:- Thousands place of a number is its fourth digit taken from right. If the number is a decimal number, then the third digit after the decimal point is the thousandths digit. ]

Well let me find the value of k !

After dividing the numerator by 9, (2) becomes,

\displaystyle\longrightarrow\sf{k=\overbrace{\sf{012345679\,012345679\,\dots\,012345679}}^5012340}

Or, undoubtedly,

\displaystyle\longrightarrow\sf{\underline{\underline{k=12345679012345679012345679012345679012345679012340}}}

Similar questions