Math, asked by ajinkyalondhe6379, 1 year ago

Q.No : 23. Find the unit digit [162^162x197^160]+[543^540+698^638]

Answers

Answered by CarlynBronk
1

Solution:

We have to find the unit digit of

[162^{162}\times 197^{160}]+[543^{540}+698^{638}]

As the unit digit of , 162^{162} = 4 , ∵ unit digit of 2^5 is 2 .

→162 = 32 × 5 + 2

162^{162}= 162^{32\times 5 +2}= 2^2=4→Unit Digit

Now, 197^{160}= 197^{40\times 4}= 7^{4}=1→ Unit Digit

{543}^{540}={543}^{4 \times 135} ⇒As unit digit of 3^4 is 1.So unit digit of {543}^{540} will be 1.

698^{638}= {698}^{5 \times 127 + 3} : As 8³ have unit digit 2, so

698^{638} will have unit digit 2.

→ 4 × 1 + (1 +2)

= 4 + 3

= 7

So, 7 is the unit Digit of [162^{162}\times 197^{160}]+[543^{540}+698^{638}]


Similar questions