Math, asked by gursawak65, 8 months ago


Q.No.5
The differentiable coefficient of . power 6w.r.t.x x³ is​

Answers

Answered by MaheswariS
0

\underline{\textsf{Given:}}

\mathsf{x^6}

\underline{\textsf{To find:}}

\textsf{Differential coefficient of}\;\mathsf{x^6}

\textsf{with respect to}\;\mathsf{x^3}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{\dfrac{d(x^6)}{d(x^3)}}

\mathsf{=\dfrac{\dfrac{d(x^6)}{dx}}{\dfrac{d(x^3)}{dx}}}

\mathsf{=\dfrac{6\,x^5}{3\,x^2}}

\mathsf{=\dfrac{2\,x^5}{x^2}}

\mathsf{=2\,x^3}

\underline{\textsf{Answer:}}

\mathsf{\dfrac{d(x^6)}{d(x^3)}=2\,x^3}

Answered by pulakmath007
17

SOLUTION :

TO DETERMINE

 \sf{}The \: differentiable \: coefficient \: of \: {x}^{6} \: w.r.t \: \: {x}^{3}

EVALUATION

Let  \sf{}y = {x}^{6} \: \: \: \: ....(1)

 \sf{}z = {x}^{3} \: \: \: \: ....(2)

Differentiating both sides of Equation (1)with respect x we get

 \displaystyle \sf{} \frac{dy}{dx} = 6 {x}^{5}

Differentiating both sides of Equation (2) with respect to x we get

 \displaystyle \sf{} \frac{dz}{dx} = 3 {x}^{2}  \therefore \sf{}The \: differentiable \: coefficient \: of \: {x}^{6} \: w.r.t \: \: {x}^{3}

 =  \displaystyle \sf{} \frac{dy}{dz}

 \displaystyle \sf{} = \frac{ \frac{dy}{dx} }{ \frac{dz}{dx} }

 \displaystyle \sf{} = \frac{6 {x}^{5} }{3 {x}^{2} }

 \displaystyle \sf{} = 2 {x}^{3}

FINAL ANSWER

 \sf{}The \: differentiable \: coefficient \: of \: {x}^{6} \: w.r.t \: \: {x}^{3} \: is \: 2 {x}^{3}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Let f(1) = 3,f' (1)=- 1/3,g (1)=-4 and g' (1) =-8/3

The derivative of √[[f(x)]^2+ [g (x)]^2]W. r. to. x. is

https://brainly.in/question/18312318

Similar questions