Math, asked by seemarobin12, 8 months ago

Q.No. 9*

If y = log( √x+√x-a), then
dy/dx is​

Answers

Answered by sonuvuce
0

\boxed{\frac{dy}{dx}=\frac{1}{2\ln 10\sqrt{x(x-a})}}

Step-by-step explanation:

Given:

y=\log(\sqrt{x}+\sqrt{x-a})

To find out:

Derivative of y

Solution:

Let \sqrt{x}+\sqrt{x-a}=t

\frac{dt}{dx}=\frac{d}{dx}(\sqrt{x}+\sqrt{x-a})

\implies \frac{dt}{dx}=\frac{d}{dx}(\sqrt{x})+\frac{d}{dx}(\sqrt{x-a})

\implies \frac{dt}{dx}=\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x-a}}

\implies \frac{dt}{dx}=\frac{\sqrt{x}+\sqrt{x-a}}{2\sqrt{x}\sqrt{x-a}}

Now

y=\log t

\frac{dy}{dx}=\frac{d}{dx}(\log t)

\implies \frac{dy}{dx}=\frac{d}{dt}(\log t).\frac{dt}{dx}

\implies \frac{dy}{dx}=\frac{1}{t\ln 10}.(\frac{\sqrt{x}+\sqrt{x-a}}{2\sqrt{x}\sqrt{x-a}})

\implies \frac{dy}{dx}=\frac{1}{(\sqrt{x}+\sqrt{x-a})\ln 10}.(\frac{\sqrt{x}+\sqrt{x-a}}{2\sqrt{x}\sqrt{x-a}})

\implies \frac{dy}{dx}=\frac{1}{2\ln 10\sqrt{x(x-a})}

Hope this answer is helpful.

Know More:

Q: Find the derivative of log(x+√(x^2+a^2)​)​

Click Here: https://brainly.in/question/10350026

Q: If y=log(x+√x^2+1), then prove that (x^2+1)d^2y/dx^2+xdy/dx=0

Click Here: https://brainly.in/question/4571014

Similar questions