Hindi, asked by sk9293030, 10 hours ago

Q.
O एक बिंदु है जो triangle ABC के अंदर इस प्रकार है कि OA = 12.cm, OC = 9cm, OB =? angle AOB = BOC = COA​

Answers

Answered by mathematicaworld6118
4

Answer:

One thing is missing in the question i.e. angle ABC=60°

OB=6√3cm

Attachments:
Answered by maneeshi299mani
0

Answer:

प्रश्न में यहाँ ∠AOB=∠BOC=∠COA और ∠ABC=60° होगा

उत्तर - BC = 6√3 cm

Explanation:

 \frac{1}{2} sin 60° =  \frac{1}{2} sin 120° (ab +bc + ca)

xy = ab+ bc+ ca

\frac{a^{2}  +b^{2} -x^{2} }{2ab}   = -  \frac{1}{2} (Δ AOB)

a²+b²-x² =  -ab

b²+c²-y² = -bc ( ΔBOC)

a²+c²-z² = -ac ( ΔAOC)

2(a²+b²+c²) - (x²+y²+z²) = -(ab+ bc+ ca)

cos पूरे त्रिकोण के लिए

\frac{x^{2} +y^{2} -z^{2} }{2xy} =  \frac{1}{2}

x²+y = xy + z²

2(a²+b²+c²) -  (x²+y²+z²) =  -(ab +bc +ca) = -xy

                   - (xy + zz²) = -xy

2(a²+b²+c²) = zz²

z² = +b²+

z² = z² - ac + b²

b² = ac

b = √ac

  = √12×9

 = 6√3

BC = 6√3 cm

#SPJ3

Attachments:
Similar questions