Math, asked by sushmita, 4 months ago

Q) ¼ part of a rod is in mud, its half is in water and 0.75 m is above the water. Find the length of the rod ?​

Answers

Answered by Ҡαηнα
60

 \huge \underline{ \tt{Answer \:  : }}

  • 3 metre.

 \huge{ \underline{ \tt{Given\:  : }}}

  • the portion of the of the rod .

 \huge{ \underline{ \tt{To  \ find\:  : }}}

  • the length of the rod ?

 \huge{ \underline{ \tt{ Using\:  : }}}

  • the application of first degree equation in one variable.

 \huge{ \underline{ \tt{Information \:  : }}}

  •  \tt let  \: \: the  \: \: lenth  \: \: of \:  \: the \: \:  rod \:  \: be \:   \: {\bf{x}} \: metre \\  \\  \tt portion \:  \: in \:  \: mud \:  =  \:  \frac{x}{4}   \: m \\  \tt portion  \: \: in \:  \: water \:  =  \:  \frac{x}{2}  \: m \\  \tt portion \:  \: above \:  \: water \:  =  \: 0.75 \: m \\  \tt =  \frac{75}{100} \:  \:  metre \\  \tt =   {\frac{3}{4}  \:  \: metre }

  \large{ \underline{ \bold{ \tt{Making \: equation \:  form: }}}}

  •  \large \tt \red{ \ \frac{x}{4}  +  \frac{x}{2} +  \frac{3}{4}   = x}

 \huge{ \underline{ \tt{Solution \:  : }}}

  •  \tt { \ \frac{x}{4}  +  \frac{x}{2} +  \frac{3}{4}   = x} \\  \\  \tt  \implies{ \ \frac{x}{4}  +  \frac{x}{2}  -  x =  -  \frac{3}{4} } \\ \tt  \implies{ \ \frac{x +  2x  -  4x} {4}  =  -  \frac{3}{4} } \\ \tt  \implies{ \ \frac{  - x} {4}  =  -  \frac{3}{4} } \\ \tt  \implies{ \ \frac{  - x} {4}  \times ( - 4) =  -  \frac{3}{4}  \times ( - 4)} \\  \large \green{ \tt{ \implies{x = 3}}}

  \tt\pink{Length \: of \: the \: rod \:  = } \huge\boxed{\purple{\rm{3 \: m}}}

Similar questions