Math, asked by infernapeshashank, 3 months ago

Q. Prove that
2cos^2Ø -1 = cos^2Ø - sin^2Ø​

Answers

Answered by anushaanindita
1

Answer:

Step-by-step explanation:

2cos^2Ø -1 = cos^2Ø - sin^2Ø

solve LHS :

=>2cos^2Ø -1

USING IDENTITY cos^2 Ф + sin^2Ф = 1

=> 2cos^2Ф - (cos^2 Ф + sin^2Ф)

=>2cos^2Ф - cos^2 Ф - sin^2Ф)

=>cos^2 Ф - sin^2Ф which is equal to RHS

Q.E.D.

Answered by chiggi2k03
1

Answer:

To prove:         2cos²Ø -1 = cos²Ø - sin²Ø​

Proof:             Taking LHS

⇒                2cos²Ф - 1

⇒            2( 1 - sin²Ф) - 1

         (∵ as cos²Ф + sin²Ф = 1)

⇒         2 - 2sin²Ф - 1

⇒          1 - 2sin²Ф              (..i)

now, taking RHS,

⇒   cos²Ф - sin²Ф

⇒         1 - sin²Ф - sin²Ф

   (∵ as cos²Ф + sin²Ф = 1)

⇒         1 - 2sin²Ф          (...ii)

Now,From i and ii eq,

we get,

                 RHS = LHS

                                                 hence proved.

Similar questions