Q. Prove that
2cos^2Ø -1 = cos^2Ø - sin^2Ø
Answers
Answered by
1
Answer:
Step-by-step explanation:
2cos^2Ø -1 = cos^2Ø - sin^2Ø
solve LHS :
=>2cos^2Ø -1
USING IDENTITY cos^2 Ф + sin^2Ф = 1
=> 2cos^2Ф - (cos^2 Ф + sin^2Ф)
=>2cos^2Ф - cos^2 Ф - sin^2Ф)
=>cos^2 Ф - sin^2Ф which is equal to RHS
Q.E.D.
Answered by
1
Answer:
To prove: 2cos²Ø -1 = cos²Ø - sin²Ø
Proof: Taking LHS
⇒ 2cos²Ф - 1
⇒ 2( 1 - sin²Ф) - 1
(∵ as cos²Ф + sin²Ф = 1)
⇒ 2 - 2sin²Ф - 1
⇒ 1 - 2sin²Ф (..i)
now, taking RHS,
⇒ cos²Ф - sin²Ф
⇒ 1 - sin²Ф - sin²Ф
(∵ as cos²Ф + sin²Ф = 1)
⇒ 1 - 2sin²Ф (...ii)
Now,From i and ii eq,
we get,
RHS = LHS
hence proved.
Similar questions