Q} Prove that :-
cos (A + B) = cos A cos B - sin A sin B
Answers
Answered by
10
Explanation:
Given Problem :-
Prove that :
cos (A + B) = cos A cos B - sin A sin B
Solution:-
To prove this , we take A = 60° and B = 30°
then
LHS: Cos (A + B)
=>Cos ( 60° + 30°)
=>Cos 90°
=>0
LHS = 0 ---------------(1)
RHS:cos A cos B - sin A sin B
=> Cos 60° Cos 30° - Sin 60° Sin 30°
=>[(1/2)×(√3/2)] - [(√3/2)×(1/2)]
=>[(1×√3)/(2×2)] - [(√3×1)/(2×2)]
=>(√3/4) - (√3/4)
=>(√3-√3)/4
=>0/4
=>0
RHS = 0 --------------------(2)
From (1)&(2)
LHS = RHS
cos (A + B) = cos A cos B - sin A sin B
Hence, Proved
Used formulae:-
- Sin 30° = 1/2
- Sin 60° = √3/2
- Cos 30° = √3/2
- Cos 60° = 1/2
Answered by
19
LET α = A and β = B
In ∆ OPG:-
FG = HE
In ∆ OFE and ∆ OEP:-
Cos (A) . Cos (B) - Sin (A) . Sin(B)
✿USED:-
- Cos (a) = base/hypotenuse
Attachments:
Similar questions