Math, asked by Anonymous, 2 months ago

Q: Prove that :

( tan 2ⁿ Φ )/tan Φ = (1 + sec 2Φ)(1 + sec 2²Φ)(1 + sec 2³Φ)(1 + sec 2⁴Φ).. .. .. .. (1 + sec 2ⁿΦ)

Solve it fast :​

Answers

Answered by AmanRatan
4

Answer:

tan2 θ – (1/cos2 θ) + 1 = 0

Solution:

L.H.S = tan2 θ – (1/cos2 θ) + 1

= tan2 θ - sec2 θ + 1 [since, 1/cos θ = sec θ]

= tan2 θ – (1 + tan2 θ) +1 [since, sec2 θ = 1 + tan2 θ]

= tan2 θ – 1 – tan2 θ + 1

= 0 = R.H.S. Proved

2. Verify that:

1/(sin θ + cos θ) + 1/(sin θ - cos θ) = 2 sin θ/(1 – 2 cos2 θ)

Solution:

L.H.S = 1/(sin θ + cos θ) + 1/(sin θ - cos θ)

= [(sin θ - cos θ) + (sin θ + cos θ)]/(sin θ + cos θ)(sin θ - cos θ)

= [sin θ - cos θ + sin θ + cos θ]/(sin2 θ - cos2 θ)

= 2 sin θ/[(1 - cos2 θ) - cos2 θ] [since, sin2 θ = 1 - cos2 θ]

= 2 sin θ/[1 - cos2 θ - cos2 θ]

= 2 sin θ/[1 – 2 cos2 θ] = R.H.S. Proved

3. Prove that:

sec2 θ + csc2 θ = sec2 θ ∙ csc2 θ

Solution:

L.H.S. = sec2 θ + csc2 θ

= 1/cos2 θ + 1/sin2 θ [since, sec θ = 1/cos θ and csc θ = 1/sin θ]

= (sin2 θ + cos2 θ)/(cos2 θ sin2 θ)

= 1/cos2 θ ∙ sin2 θ [since, sin2 θ + cos2 θ = 1]

= 1/cos2 θ ∙ 1/sin2 θ

= sec2 θ ∙ csc2 θ = R.H.S. Proved

Step-by-step explanation:

Answered by MrAttitudeboy
6

Refer to the above attachment !!

hope it will help u !!

✌️✌️✌️✌️

Attachments:
Similar questions