Math, asked by 10404, 7 months ago

Q:-prove that:-
∫secxdx = log |secx + tanx| + c
solve it.​

Answers

Answered by Anonymous
4

\green{\bold{\underline{ ☆        UPSC-ASPIRANT ☆} }}

\red{\bold{\underline{\underline{QUESTION:-}}}}

Q:-prove that:-

∫secxdx = log |secx + tanx| + c

\huge\tt\underline\blue{ANSWER }

------>>>>Here is your answer<<<<--------

∫secxdx = log |secx + tanx|  + c

∫secxdx =∫ \frac{secx(secx + </p><p>tanx)}{(secx + tanx)} dx

put \: secx + tanx = t

(secxtanx +  {sec}^{2} x)dx = dt

secx(tanx + secx)dx = dt

 ⟹ ∫ \frac{dt}{t}

 ⟹ log |t|  + c

 ⟹ log |secx + tanx|  + c

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Similar questions