Math, asked by aditya1852005, 1 year ago

Q. Prove that the distance between the points (at^2, 2at) and
is a/t^2, 2at/t) is a(t+1/t)^2​

Answers

Answered by Siddharta7
2

Given points are A(at²,2at) , B(a/t²,-2a/t)

Calculate the distance between these points by using the distance formula.

S = √[(at²-a/t²)² + (2at+2a/t)²]

  = √[a²(t²-1/t²)² + 4a²(t+1/t)²]

  = √[a²(t⁴+1/t⁴-2) + 4a²(t²+1/t²+2)]

  = a √(t⁴+1/t⁴-2+4t²+4/t²+8)

  = a √ (t⁴+4t²+6+4/t²+1/t⁴)

  = a √ (t + 1/t)⁴

  = a √ [(t + 1/t)²]²

  = a (t + 1/t)²

This is the required answer.

Answered by Anonymous
1

√[(at²-a/t²)² + (2at+2a/t)²]

  = √[a²(t²-1/t²)² + 4a²(t+1/t)²]

  = √[a²(t⁴+1/t⁴-2) + 4a²(t²+1/t²+2)]

  = a √(t⁴+1/t⁴-2+4t²+4/t²+8)

  = a √ (t⁴+4t²+6+4/t²+1/t⁴)

  = a √ (t + 1/t)⁴

  = a √ [(t + 1/t)²]²

  = a (t + 1/t)²

Similar questions