Q. Prove that the three angles of an equilateral triangle are equal.
Answers
Answered by
2
Answer:
Given: PQR is an equilateral triangle.
To prove: ∠QPR = ∠PQR = ∠ PRQ.
Proof:
In the equilateral ∆PQR, let ∠PQR = ∠PRQ = ∠RPQ = x°. Therefore, 3x° = 180° as the sum of the three angles of a triangle is 180°.
If one angle of an isosceles triangle is given, the other two can be easily found out.
Make sure to mark as brainliest :)
Attachments:
Answered by
1
let each angle be x
the total sum of the angle of triangle is 180 degree.
x+x+x=180
3X=180
x=180/3
x=60
so each angle will be 60 degree
Similar questions