♱Qᴜᴇꜱᴛɪᴏɴ♰
♱Qᴜᴇꜱᴛɪᴏɴ♰
ꜱʜᴏᴡ ᴛʜᴀᴛ ɪꜰ ᴅɪᴀɢᴏɴᴀʟꜱ ᴏꜰ ꜱQᴜᴀʀᴇ ᴀʀᴇ ᴇQᴜᴀʟ ᴀɴᴅ ʙɪꜱᴇᴄᴛ ᴇᴀᴄʜ ᴏᴛʜᴇʀ ᴀᴛ ʀɪɢʜᴛ ᴀɴɢʟᴇꜱ, ᴛʜᴇɴ ɪᴛ ɪꜱ ᴀ ꜱQᴜᴀʀᴇ
♱Qᴜᴇꜱᴛɪᴏɴ♰
ꜱʜᴏᴡ ᴛʜᴀᴛ ɪꜰ ᴅɪᴀɢᴏɴᴀʟꜱ ᴏꜰ ꜱQᴜᴀʀᴇ ᴀʀᴇ ᴇQᴜᴀʟ ᴀɴᴅ ʙɪꜱᴇᴄᴛ ᴇᴀᴄʜ ᴏᴛʜᴇʀ ᴀᴛ ʀɪɢʜᴛ ᴀɴɢʟᴇꜱ, ᴛʜᴇɴ ɪᴛ ɪꜱ ᴀ ꜱQᴜᴀʀᴇ
♱Qᴜᴇꜱᴛɪᴏɴ♰
ꜱʜᴏᴡ ᴛʜᴀᴛ ɪꜰ ᴅɪᴀɢᴏɴᴀʟꜱ ᴏꜰ ꜱQᴜᴀʀᴇ ᴀʀᴇ ᴇQᴜᴀʟ ᴀɴᴅ ʙɪꜱᴇᴄᴛ ᴇᴀᴄʜ ᴏᴛʜᴇʀ ᴀᴛ ʀɪɢʜᴛ ᴀɴɢʟᴇꜱ, ᴛʜᴇɴ ɪᴛ ɪꜱ ᴀ ꜱQᴜᴀʀᴇ
♱Qᴜᴇꜱᴛɪᴏɴ♰
ꜱʜᴏᴡ ᴛʜᴀᴛ ɪꜰ ᴅɪᴀɢᴏɴᴀʟꜱ ᴏꜰ ꜱQᴜᴀʀᴇ ᴀʀᴇ ᴇQᴜᴀʟ ᴀɴᴅ ʙɪꜱᴇᴄᴛ ᴇᴀᴄʜ ᴏᴛʜᴇʀ ᴀᴛ ʀɪɢʜᴛ ᴀɴɢʟᴇꜱ, ᴛʜᴇɴ ɪᴛ ɪꜱ ᴀ ꜱQᴜᴀʀᴇ
Answers
Answer:
Question: Show that the diagonals of a a square are equal and bisect each other at right angles.
To prove: (i) AC = BD
(ii) OA=OC OB = OD
iii) angle 1 = angle 2 = angle 3 = angle 4 = 90°
In ∆ABD and ∆ABC
AB = AB (common)
AD = BC (sides of square)
Angle A = Angle B (90°)
∆ABD ~ ∆ABC (by SAS)
AC = BD (by cpct)
In ∆DOC and ∆AOB
DC = AB (sides of square)
Angle 2 = Angle 4 (vertically opposite angles)
Angle 5 = Angle 6 (AIA)
∆DOC ~ ∆AOB (by ASA)
OA = OC
OD = OB (by cpct)
In ∆AOD and ∆COD
OD = OD (common)
AD = CD (sides of square)
OA = OC (proved)
∆AOD ~ ∆COD ( by SSS)
Angle 1 = Angle 2 (by cpct)
Similarly, Angle 3 = Angle 4
Angle 1 + Angle 2 = 180°
2angle 1 = 180°
Angle 1 = 180° /2 = 90°
Angle 1 = 90°
Angle 1 = Angle 2= 90°
Angle 2= Angle 4 = 90°
Angle 1 = Angle 3 = 90°