Math, asked by Anonymous, 4 months ago

qυєsтıση :-

★ Evaluate -

\: \: \: \: \: \: \: \: \bullet\bf\: \: \: {\lim_{h \rightarrow 0} \dfrac{1}{h} \bigg{ \dfrac{1}{\sqrt{x + h}} - \dfrac{1}{\sqrt{x}} \bigg} }


⚠️ Don't spam ⚠️​

Answers

Answered by wtfhrshu
68

\;\;\;\bullet\;\;\;\displaystyle\lim_{\sf{h\to 0}}{\sf{\dfrac{1}{h}\bigg\{\dfrac{1}{\sqrt{x+h}}-\dfrac{1}{\sqrt{x}}\bigg\}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\displaystyle=\lim_{\sf{h\to 0}}{\sf{\dfrac{\dfrac{1}{\sqrt{x+h}}-\dfrac{1}{\sqrt{x}}}{h}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\displaystyle=\lim_{\sf{h\to 0}}{\sf{\dfrac{1}{h\sqrt{x+h}}}-\dfrac{1}{h\sqrt{x}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\displaystyle=\lim_{\sf{h\to 0}}\sf{\dfrac{\sqrt{x}}{h\sqrt{x+h\sqrt{x}}}}-\dfrac{\sqrt{x+h}}{h\sqrt{x+h}\sqrt{x}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\displaystyle=\lim_{\sf{h\to 0}}\sf{\dfrac{\sqrt{x}-\sqrt{x+h}}{h\sqrt{x(x+h)}}}×\dfrac{\sqrt{x}+\sqrt{x+h}}{\sqrt{x}+\sqrt{x+h}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\displaystyle=\lim_{\sf{h\to 0}}\sf{\dfrac{x-(x+h)}{(h\sqrt{x(x+h)})\;(\sqrt{x}+\sqrt{x+h})}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{=\dfrac{-1}{2x\sqrt{x}}}

Similar questions