Math, asked by Anonymous, 2 months ago

qυєsтıση :-

Given that \sf{\overline{x}} is the mean and σ² is the variance of n observations \bf{x_1 , x_2, ..., x_n}.
Prove that the mean and variance of the observations \bf{ax_1 , ax_2 , ax_3, ..., ax_n} are \sf{a \overline{x}} and a²σ², respectively, (a ≠ 0).

⚠️No spam⚠️
⚠️No copy paste⚠️​

Answers

Answered by rkcomp31
11

Given:

Mean \bar{x} and variance \sigma^2 of following observations:

x_1,x_2,x_3---------------------, x_n

To Prove:

The mean and variance of the following observations :

ax_1,ax_2,ax_3,------------, ax_n

are a\bar{x}\ and \, a^2\sigma^2

Solution:

The solution is provided in the attached file

Concepts:

.1. \,The\, mean \, of  : x_1,x_2,x_3,---------------------, x_n\\\\\bar x = \frac {x_1+x_2+x_3,--------------+ x_n}{n}

2.\, The \, variance \, of  : x_1,x_2,x_3,-------------- x_n\\\\ \sigma^2 = \frac {(x_1-\bar x)^2+(x_2-\bar x)^2+(x_3-\bar x)^2+------------------+( x_n-\bar x)^2}{n}

Attachments:
Answered by mathdude500
7

\large\underline\green{\bold{ \sf \: ANSWER}}

\begin{gathered}\begin{gathered}\bf \:Given - \begin{cases} &\sf{set \: of \: n \: observations \: \bf{x_1,x_2,x_3,-  -, x_n}} \\ &\sf{having \: mean \: \overline{x} \: and \: variance \:  { \sigma}^{2} } \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \:To \: Prove - \begin{cases} &\sf{mean \: and \: variance \: of \: } \\ &\sf{\bf{ax_1 , ax_2 , ax_3, ..., ax_n} \: is}\\ &\sf{a\overline{x} \: and \:  {a}^{2} {\sigma}^{2}  } \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

We have given that

 \rm :\implies\:\overline{x} \: is \: mean \: of \: \bf{x_1,x_2,x_3,  -  - ,x_n} \: then

\rm :\implies\: \boxed{ \green{ \bf \: \overline{x} \:  =  \tt \: \dfrac{\sum_{i=1}^n \: x_i}{n} }}

Also,

Given that

 \rm :\implies\: {\sigma}^{2} \: is \: variance \: of \: \bf{x_1,x_2,x_3,  -  - ,x_n} \: then

\rm :\implies\: \boxed{ \red{ \bf \:  {\sigma}^{2}  \:  =  \tt \:\dfrac{\sum_{i=1}^n \:  {x_i}^{2} }{n}  -  {(\overline{x})}^{2}  }}

Now,

The new set of n observations are

\bf{ax_1,ax_2,ax_3, -  -  - ,ax_n}

 \bull \bf \: Let  \: us  \: assume  \: that \:  mean \:  is \:  \overline{ X}

Then,

we know that

Mean is given by the formula

\rm :\implies\:\overline{ X} \:  =  \: \dfrac{\sum_{i=1}^n \: ax_i}{n}

\rm :\implies\:\overline{ X} \:  =  \: \dfrac{a \: \sum_{i=1}^n \: x_i}{n}

\rm :\implies\:\overline{ X} \:  =  \: a \: \dfrac{\sum_{i=1}^n \: x_i}{n}

\rm :\implies\: \boxed{ \pink{ \bf \: \overline{ X} \:  =  \tt \: a \: \overline{x}}}

{\boxed{\boxed{\bf{Hence, Proved}}}}

Now,

We know that

variance is given by

\rm :\implies\: {\sigma_{1}}^{2}  = \dfrac{\sum_{i=1}^n \:  {a}^{2} {x_i}^{2}  }{n}  -  {(\overline{ X})}^{2}

\rm :\implies\: {\sigma_{1}}^{2}  = \dfrac{ {a}^{2}\sum_{i=1}^n \:  {x_i}^{2}  }{n}  -  {(a\overline{ x})}^{2}

\rm :\implies\: {\sigma_{1}}^{2}  = {a}^{2}  \dfrac{ \sum_{i=1}^n \:  {x_i}^{2}  }{n}  -   {a}^{2} {(\overline{ x})}^{2}

\rm :\implies\: {\sigma_{1}}^{2}  = {a}^{2}  \bigg( \dfrac{ \sum_{i=1}^n \:  {x_i}^{2}  }{n}  -  {(\overline{ x})}^{2} \bigg)

\rm :\implies\: \boxed{ \pink{ \bf \:  {\sigma_{1}}^{2}  \:  =  \tt \: {a}^{2} {\sigma}^{2}   }}

{\boxed{\boxed{\bf{Hence, Proved}}}}

Similar questions