Q- Show that any positive even integer is of the form 8q, 8q + 2, 8q + 4, or 8q + 6, where q is some integer.
Answers
Answered by
61
Let a be any positive integer and b = 8
By Euclid's division lemma
a = bq+r where 0≤ r<b
a = 8q +r
where r = 0,1,2,3,4,5,6,7
So a = 8q = even
a= 8q+1 = odd
a= 8q+2 = even
a = 8q+3= odd
a = 8q + 4= even
a = 8q + 5 = odd
a = 8q + 6 = even
a = 8q + 7 = odd
∴ 8q, 8q + 2, 8q + 4, or 8q + 6 are even
By Euclid's division lemma
a = bq+r where 0≤ r<b
a = 8q +r
where r = 0,1,2,3,4,5,6,7
So a = 8q = even
a= 8q+1 = odd
a= 8q+2 = even
a = 8q+3= odd
a = 8q + 4= even
a = 8q + 5 = odd
a = 8q + 6 = even
a = 8q + 7 = odd
∴ 8q, 8q + 2, 8q + 4, or 8q + 6 are even
Answered by
24
let a be any positive integer
then
b=8
0≤r<b
0≤r<8
r=0,1,2,3,4,5,6,7
case 1.
r=0
a=bq+r
8q+0
8q
case 2.
r=1
a=bq+r
8q+1
case3.
r=2
a=bq+r
8q+2
case 4.
r=3
a=bq+r
8q+3
case 5.
r=4
a=bq+r
8q+4
case 6.
r=5
a=bq+r
8q+5
case7.
r=6
a=bq+r
8q+6
case 8
r=7
a=bq+r
8q+7
Similar questions