Math, asked by мααɴѕí, 19 days ago

Q simplify
 { \bf a)  \frac{16 {y}^{2}  + 80 {y}^{2}  - 20y}{4y} } \\  \\  \bf \: b) \:  \frac{(1 + a)(1 + b)(3)}{3(1 + a)}  \\  \\   \bf \: c \:  \frac{10 {x}^{2}  + 15x}{5x}
Note - use the easiest method _/\_​

Answers

Answered by mathdude500
26

\large\underline{\sf{Solution-a}}

Given expression is

\rm \: \frac{16 {y}^{2} + 80 {y}^{2} - 20y}{4y} \\

\rm \:  =  \: \frac{96{y}^{2} - 20y}{4y} \\

\rm \:  =  \: \frac{96{y}^{2}}{4y} -  \frac{20y}{4y}  \\

\rm \: =  \:24y - 5 \\

So,

\rm\implies \:\boxed{\sf{  \:\rm \: \frac{16 {y}^{2} + 80 {y}^{2} - 20y}{4y}  = 24y - 5 \:  \: }} \\

\large\underline{\sf{Solution-b}}

Given expression is

\rm \: \frac{(1 + a)(1 + b)(3)}{3(1 + a)} \\

can be re-arranged as

\rm \: =  \:\frac{\cancel3 \: \cancel{(1 + a)} \: (1 + b)}{\cancel3 \:  \cancel{(1 + a)}} \\

\rm \: =  \:1 + b \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \: \frac{(1 + a)(1 + b)(3)}{3(1 + a)} = 1 + b \:  \: }} \\

\large\underline{\sf{Solution-c}}

Given expression is

\rm \: \frac{10 {x}^{2} + 15x}{5x} \\

\rm \: =  \:\frac{10 {x}^{2}}{5x}  +  \frac{15x}{5x} \\

\rm \: =  \:2x + 3 \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \: \frac{10 {x}^{2} + 15x}{5x} = 2x + 3 \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\sf{  \:\rm \:  {(x + y)}^{2} =  {x}^{2} + 2xy +  {y}^{2} \:  \: }} \\

\boxed{\sf{  \:\rm \:  {(x - y)}^{2} =  {x}^{2}  -  2xy +  {y}^{2} \:  \: }} \\

\boxed{\sf{  \:\rm \:  {x}^{2} -  {y}^{2}  = (x + y)(x - y) \:  \: }} \\

\boxed{\sf{  \:\rm \: (x + a)(x + b) =  {x}^{2} + (a + b)x + ab \:  \: }} \\

\boxed{\sf{  \:\rm \:  {x}^{m} \div  {x}^{n} =  {x}^{m - n}  \:  \: }} \\

\boxed{\sf{  \:\rm \:  {x}^{m}  \times   {x}^{n} =  {x}^{m +  n}  \:  \: }} \\

\boxed{\sf{  \:\rm \:   {( {x}^{m} )}^{n}  =  {x}^{mn}  \:  \: }} \\

\boxed{\sf{  \:\rm \:  {x}^{0} \:  =  \: 1 \:  \: }} \\

\boxed{\sf{  \:\rm \:  {x}^{ - n} \:  =  \:  \frac{1}{ {x}^{n} }  \:  \: }} \\

Answered by IIYourFirstDeathII
3

Answer:

Kepler-452b is a super-Earth exoplanet orbiting within the inner edge of the habitable zone of the Sun-like star Kepler-452, and is the only planet in the system discovered by Kepler. It is located about 1,402 light-years from Earth in the constellation of Cygnus.

Hi mam

i was not reading your ch.at on that day

you thanked answers on my both i.ds so i thought u were talking to me

sorry for disturbing

Step-by-step explanation:

Similar questions