Math, asked by Anonymous, 9 months ago

Q:-solve and verify the equation
 \frac{1}{2} - \frac{1}{3} (x - 1) + 2 = 0

Answers

Answered by Anonymous
16

\green{\bold{\underline{ ✪ UPSC-ASPIRANT✪ }}}

\red{\bold{\underline{\underline{QUESTION:-}}}}

Q:-solve and verify the equation

 \frac{1}{2} - \frac{1}{3} (x - 1) + 2 = 0

\huge\tt\underline\blue{Answer }

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

══════════XXX═════════════

⟹ \frac{1}{2}  -  \frac{1}{3} (x - 1) + 2 = 0</p><p>

⟹</p><p> \frac{3 - 2(x - 1) + 2}{6}  = 0

⟹</p><p> \frac{1}{6} (x - 1) + 2 = 0

⟹</p><p>(x - 1) + 2 = 0

⟹</p><p>x - 1 =  - 2

⟹</p><p>x =  - 2 + 1

⟹</p><p>x =  - 1

CHECK:-

⟹ \frac{1}{2}  -  \frac{1}{3} ( - 1 - 1) + 2</p><p>

⟹</p><p> \frac{3 - 2( - 2) + 2}{6}  = 0

⟹</p><p> \frac{1}{6} ( - 2) + 2 = 0

⟹</p><p> \frac{0}{6}  = 0

⟹</p><p>0 = 0

THEREFORE,L.H.S=R.H.S

VERIFIED ✔️

══════════XXX═════════════

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Answered by Anonymous
6

Answer:-

 \sf  ✯ \: \frac{1}{2} - \frac{1}{3} (x - 1) + 2 = 0

 \sf ➜ \: \frac{3 - 2(x - 1) + 2}{6} = 0

 \sf ➜ \: \frac{1}{6} (x - 1) + 2 = 0

 \sf ➜ \: (x - 1) + 2 = 0

 \sf ➜ \: x - 1 = - 2

 \sf ➜ \: x = - 2 + 1

 \sf ➜ \: x = - 1

 \boxed{\sf x = - 1}

 \sf \red {Therefore, \: value \: of \: x \: in \: above \: equation \: is \: -1}

____________________________________

Verification:-

 \sf ➜ \: \frac{1}{2} - \frac{1}{3} ( - 1 - 1) + 2 = 0

 \sf ➜ \: \frac{3 - 2( - 2) + 2}{6} = 0

 \sf ➜ \: \frac{1}{6} ( - 2) + 2 = 0

 \sf ➜ \: \frac{0}{6} = 0

 \sf ➜ \: 0 = 0

 \sf \red {Hence, \: Verified}

Similar questions