Math, asked by Anonymous, 9 months ago

Q:-solve and verify the equation
 \frac{1}{2} - \frac{1}{3} (x - 1) + 2 = 0

Answers

Answered by Anonymous
1

Step-by-step explanation:

\red{\bold{\underline{\underline{QUESTION:-}}}}

Q:-solve and verify the equation

 \frac{1}{2} - \frac{1}{3} (x - 1) + 2 = 0

\huge\tt\underline\blue{Answer }

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

══════════XXX═════════════

⟹ \frac{1}{2}  -  \frac{1}{3} (x - 1) + 2 = 0</p><p>

⟹</p><p> \frac{3 - 2(x - 1) + 2}{6}  = 0

⟹</p><p> \frac{1}{6} (x - 1) + 2 = 0

⟹</p><p>(x - 1) + 2 = 0

⟹</p><p>x - 1 =  - 2

⟹</p><p>x =  - 2 + 1

⟹</p><p>x =  - 1

CHECK:-

⟹ \frac{1}{2}  -  \frac{1}{3} ( - 1 - 1) + 2</p><p>

⟹</p><p> \frac{3 - 2( - 2) + 2}{6}  = 0

⟹</p><p> \frac{1}{6} ( - 2) + 2 = 0

⟹</p><p> \frac{0}{6}  = 0

⟹</p><p>0 = 0

THEREFORE,L.H.S=R.H.S

VERIFIED ✔️

══════════XXX═════════════

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Answered by vaibhavshinde145
0

Step-by-step explanation:

\red{\bold{\underline{\underline{QUESTION:-}}}}

QUESTION:−

Q:-solve and verify the equation

\frac{1}{2} - \frac{1}{3} (x - 1) + 2 = 0

2

1

3

1

(x−1)+2=0

\huge\tt\underline\blue{Answer }

Answer

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

══════════XXX═════════════

⟹ \frac{1}{2} - \frac{1}{3} (x - 1) + 2 = 0⟹

2

1

3

1

(x−1)+2=0

⟹ \frac{3 - 2(x - 1) + 2}{6} = 0⟹

6

3−2(x−1)+2

=0

⟹ \frac{1}{6} (x - 1) + 2 = 0⟹

6

1

(x−1)+2=0

⟹ (x - 1) + 2 = 0⟹(x−1)+2=0

⟹ x - 1 = - 2⟹x−1=−2

⟹ x = - 2 + 1⟹x=−2+1

⟹ x = - 1⟹x=−1

CHECK:-

⟹ \frac{1}{2} - \frac{1}{3} ( - 1 - 1) + 2⟹

2

1

3

1

(−1−1)+2

⟹ \frac{3 - 2( - 2) + 2}{6} = 0⟹

6

3−2(−2)+2

=0

⟹ \frac{1}{6} ( - 2) + 2 = 0⟹

6

1

(−2)+2=0

⟹ \frac{0}{6} = 0⟹

6

0

=0

⟹ 0 = 0⟹0=0

THEREFORE,L.H.S=R.H.S

VERIFIED ✔️

══════════XXX═════════════

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Similar questions