Math, asked by Anonymous, 8 months ago

Q:-solve and verify the equation
 \frac{1}{2} - \frac{1}{3} (x - 1) + 2 = 0

Aryabhatta was a great mathematician​

Answers

Answered by Anonymous
1

Step-by-step explanation:

\red{\bold{\underline{\underline{QUESTION:-}}}}

Q:-solve and verify the equation

 \frac{1}{2} - \frac{1}{3} (x - 1) + 2 = 0

\huge\tt\underline\blue{Answer }

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

══════════XXX═════════════

⟹ \frac{1}{2}  -  \frac{1}{3} (x - 1) + 2 = 0</p><p>

⟹</p><p> \frac{3 - 2(x - 1) + 2}{6}  = 0

⟹</p><p> \frac{1}{6} (x - 1) + 2 = 0

⟹</p><p>(x - 1) + 2 = 0

⟹</p><p>x - 1 =  - 2

⟹</p><p>x =  - 2 + 1

⟹</p><p>x =  - 1

CHECK:-

⟹ \frac{1}{2}  -  \frac{1}{3} ( - 1 - 1) + 2</p><p>

⟹</p><p> \frac{3 - 2( - 2) + 2}{6}  = 0

⟹</p><p> \frac{1}{6} ( - 2) + 2 = 0

⟹</p><p> \frac{0}{6}  = 0

⟹</p><p>0 = 0

THEREFORE,L.H.S=R.H.S

VERIFIED ✔️

══════════XXX═════════════

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Answered by sumanrudra22843
0

Step-by-step explanation:

f(x) = kx³ – 8x² + 5

Roots are α – β , α & α +β

Sum of roots = – (-8)/k

Sum of roots = α – β + α + α +β = 3α

= 3α = 8/k

= k = 8/3α

or we can solve as below

f(x) = (x – (α – β)(x – α)(x – (α +β))

= (x – α)(x² – x(α+β + α – β) + (α² – β²))

= (x – α)(x² – 2xα + (α² – β²))

= x³ – 2x²α + x(α² – β²) – αx² +2α²x – α³ + αβ²

= x³ – 3αx² + x(3α² – β²) + αβ² – α³

= kx³ – 3αkx² + xk(3α² – β²) + k(αβ² – α³)

comparing with

kx³ – 8x² + 5

k(3α² – β²) = 0 => 3α² = β²

k(αβ² – α³) = 5

=k(3α³ – α³) = 5

= k2α³ = 5

3αk = 8 => k = 8/3α

(8/3α)2α³ = 5

=> α² = 15/16

=> α = √15 / 4

Similar questions