Math, asked by Anonymous, 7 months ago

Q:-solve and verify the equation
 \frac{1}{3} x - 4 = x - ( \frac{1}{2} + \frac{x}{ 3} )


Answers

Answered by Anonymous
24

\red{\bold{\underline{\underline{QUESTION:-}}}}

Q:-solve and verify the equation

 \frac{1}{3} x - 4 = x - ( \frac{1}{2} + \frac{x}{ 3} )

\huge\mathcal{Answer}

⟹\bold{</p><p> \frac{1}{3} x - 4 = x  - ( \frac{1}{2}  +  \frac{x}{3} )}

⟹\bold{</p><p> \frac{x}{3}  - 4 = x - ( \frac{3 + 2x}{6} )}

⟹\bold{</p><p> \frac{x - 12}{3}  = x - ( \frac{2x + 3}{6} )}

⟹\bold{</p><p> \frac{x - 12}{3}  = x -  \frac{2x - 3}{6} }

⟹\bold{</p><p> \frac{x - 12}{3}  =  \frac{6x - 2x - 3}{6}}

⟹\bold{</p><p> \frac{x - 12}{3}  =  \frac{4x - 3}{6}}

\bold{\red{cancelling 6( R.H.S) By 3 From L.H.S}}

⟹ \bold{\frac{x - 12}{1}  =  \frac{4x  - 3}{2} }</p><p>

⟹\bold{</p><p>2(x - 12) = 4x - 3}

⟹\bold{</p><p>2x - 24 = 4x - 3}

⟹\bold{</p><p> - 24 + 3 = 4x - 2x}

⟹\bold{</p><p> - 21 = 2x}

⟹\bold{</p><p>x =  -  \frac{21}{2} }

\bold{\red{CHECK:-}}

⟹ \bold{\frac{  - \frac{21}{2} }{3}  - 4 =   - \frac{21}{2}  - ( \frac{1}{2}  + ( - ) \frac{ \frac{21}{2} }{3} )}</p><p>

⟹\bold{</p><p> -  \frac{21}{6}  - 4 =  -  \frac{21}{2}  - ( \frac{1}{2}  -  \frac{21}{6} )}

⟹\bold{</p><p>  - \frac{7}{2}  - 4 =   - \frac{21}{2} - ( \frac{1}{2}   -  \frac{7}{2} )}

⟹\bold{</p><p> \frac{ - 7 - 8}{2}  = -   \frac{21}{2}  - ( -  \frac{6}{2} )}

⟹ \bold{-  \frac{15}{2}  =  -  \frac{21}{2} - ( - 3) }</p><p>

⟹\bold{</p><p>  - \frac{15}{2}  =  -  \frac{21}{2}  + 3}

⟹\bold{</p><p> -  \frac{15}{2}  =  \frac{ - 21 + 6}{2}  =  -  \frac{15}{2}}

THEREFORE,L.H.S=R.H.S

VERIFIED✓

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Answered by Anonymous
212

  \LARGE{\underline{\sf \red{GIVEN:-}}}

 \huge \bull \:   \huge \sf{\frac{1}{3} x - 4 = x - ( \frac{1}{2} + \frac{x}{ 3} )}

 \LARGE{\underline{\sf \red{TO \: FIND:-}}}

  • Solve and verify the equation.

 \LARGE{\underline{\sf \red{SOLUTION:-}}}

 \boxed{\huge {\tt{\frac{1}{3} x - 4 = x - ( \frac{1}{2} + \frac{x}{ 3} )}}}

 :\large\implies\tt\gray{ \dfrac{x}{3}  - 4 = x -  ( \dfrac{3 + 2x}{6}) }

 :\large\implies \tt\gray{ \dfrac{x}{3} - 4 = x -  \dfrac{  3  + 2x}{6}  }

 :\large\implies \tt\gray{ \dfrac{x - 12}{3}  =  \dfrac{6x - 3 - 2x}{6} }

 :\large\implies \tt\gray{ \dfrac{x - 12}{3} =  \dfrac{4x - 3}{6}  }

Now let's apply the cross multiplication rule:-

 :\large\implies \tt\gray{6(x - 12) = 3(4x - 3)}

  :\large\implies \tt\gray{6x - 72 = 12x - 9}

 :\large\implies \tt\gray{6x - 12x = 72 - 9}

  :\large\implies \tt\gray{ - 6x = 63}

 :\large\implies \tt\gray{x =   \cancel\dfrac{ - 63}{6} }

 :\large\implies \boxed {\underline{ \tt\pink{x =   - (\dfrac {21}{2}) }}}

Now let's verify our result using LHS = RHS rule:-

\huge\tt \color{teal}{ \frac{1}{3} x - 4 = x - ( \frac{1}{2} + \frac{x}{ 3} ) }

:\large\implies \tt \color{teal}{  \dfrac{1}{3} \times  \dfrac{ - 21}{2} - 4 =   - \dfrac{21}{2}  - ( \dfrac{1}{2} +  \dfrac{ \dfrac{ - 21}{2} }{3}    )}   \\

 :\large\implies \tt \color{teal}{  \dfrac{ - 21}{6}  - 4 =   - \frac{21}{2}  - ( \dfrac{1}{2}  -  \frac{ 21}{6})  } \\

 :\large\implies \tt \color{teal}{  \dfrac{ - 21 - 24}{6} =   - \dfrac{21}{2}  - ( \dfrac{3 - 21}{6})  }\\

:\large\implies \tt \color{teal}{  \dfrac{ -45}{6} =   - \dfrac{21}{2}  +  \dfrac{18}{6}  } \ \\

:\large\implies \tt \color{teal}{   \dfrac{ - 45}{6}  =  \dfrac{ - 63 + 18}{6}   }

:\large\implies \tt \color{red}{   \dfrac{ - 45}{6}   =  \dfrac{ - 45}{6}  }

 \huge{ \underline{ \overline{ \bf  \orange{LHS=RHS}}}}

 \large{ \underline{ \bf \green{Hence~Verified  \huge \sf\dag}}}

Similar questions