Math, asked by Anonymous, 7 months ago

Q:-solve the quadratic equation with proper steps
 \sqrt{2} {x}^{2} + 7x + 5 \sqrt{2} = 0

Answers

Answered by Anonymous
6

\green{\bold{\underline{ ☆        UPSC-ASPIRANT ☆} }}

\red{\bold{\underline{\underline{QUESTION:-}}}}

Q:-solve the quadratic equation

 \sqrt{2} {x}^{2} + 7x + 5 \sqrt{2} = 0

\huge\tt\underline\blue{ANSWER }

------>>>>Here is your answer<<<<--------

⇛ \sqrt{2}  {x}^{2}  + 7x + 5 \sqrt{2}  = 0

⇛ \sqrt{2}  {x}^{2}  + 2x + 5x + 5 \sqrt{2}  = 0

 ⇛ \sqrt{2} x(x +  \sqrt{2} ) + 5(x +  \sqrt{2} ) = 0

⇛(x +  \sqrt{2} )( \sqrt{2} x + 5)

⇛x +  \sqrt{2}  = 0

⇛x =  -  \sqrt{2} ✓

⇛ \sqrt{2} x + 5 = 0

⇛x =  -  \frac{5}{ \sqrt{2} } ✓

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Answered by ManuAgrawal01
42

Given:-

 \bf \implies \sqrt{2} {x}^{2} + 7x + 5 \sqrt{2} = 0

To Find:-

  \bf \implies the \: solution

STEP BY STEP EXPLANATION:-

\bf \implies \sqrt{2} {x}^{2} + 7x + 5 \sqrt{2} = 0 \\  \\ \bf \implies x =  \frac{ - 7± \sqrt{ {7}^{2}  - 4 \sqrt{2 } \times 5 \sqrt{2}  } }{2 \sqrt{2} }  \\  \\ \bf \implies\frac{ - 7± \sqrt{ 49 - 4 \sqrt{2 } \times 5 \sqrt{2}  } }{2 \sqrt{2} }  \\  \\  \bf \implies\frac{ - 7± \sqrt{ 49 - 4  \times 2 \times 5 \sqrt{2}  } }{2 \sqrt{2} }  \\  \\ \bf \implies\frac{ - 7± \sqrt{ 49 - 4 0 } }{2 \sqrt{2} }  \\  \\  \bf \implies\frac{ - 7± \sqrt{ 9} }{2 \sqrt{2} }  \\  \\  \bf \implies\frac{ - 7± { 3 }}{2 \sqrt{2} }  \\  \\ \bf \implies\frac{ - 7 + { 3 }}{2 \sqrt{2} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bf \frac{ - 7 -  { 3 }}{2 \sqrt{2} }  \\  \\ \bf \implies x =  -  \sqrt{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bf \frac{ - 7 -  { 3 }}{2 \sqrt{2} }  \\  \\  \bf \implies x =  -  \sqrt{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bf \frac{ 5 \sqrt{2} }{2  }  \\  \\  \bf \implies x_1 =  -  \frac{5 \sqrt{2} }{2}  \:  \:  \:  \:  \: , \:  \:  \:  \:  \:  x_2 =  -  \sqrt{2}

Similar questions