Math, asked by Anonymous, 8 months ago

Q:-solve this and then find pq
 {a}^{4} + {b}^{4} = ( {a}^{2} + pab + {b}^{2} )( {a}^{2} - qab + {b}^{2} ).

Answers

Answered by Anonymous
17

\green{\bold{\underline{ ✪ UPSC-ASPIRANT✪ }}}

\red{\bold{\underline{\underline{QUESTION:-}}}}

Q:-solve this and then find pq

 {a}^{4} + {b}^{4} = ( {a}^{2} + pab + {b}^{2} )( {a}^{2} - qab + {b}^{2} )

\huge\tt\underline\blue{Answer }

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

══════════XXX═════════════

⟹ {a}^{4} +  {b}^{4}   =  { ({a}^{2} )}^{2}  +  {( {b}^{2} )}^{2}

⟹ {( {a}^{2} +  {b}^{2} ) }^{2}  - 4 {a}^{2}  {b}^{2} </p><p></p><p>[tex]⟹ { ({a}^{2}  +  {b}^{2} )}^{2}  - ( {2ab)}^{2}

⟹ {a}^{4}  +  {b}^{4}  = ( {a}^{2}  +  {b}^{2}  + 2ab)( {a}^{2}  +  {b}^{2}  - 2ab)

⟹( {a}^{2}  + 2ab +  {b}^{2} )( {a}^{2}  - 2ab +  {b}^{2} ) = ( {a}^{2}  + pab +  {b}^{2} )( {a}^{2}  - qab +  {b}^{2} )

On comparing both sides :-

we get p=2 & q =2

∴pq = 2 {x}^{2}  = 4

══════════XXX═════════════

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Answered by XxMissPaglixX
2

 {a}^{4}  +  {b}^{4}  =  {( {a}^{2} )}^{2}  +  { ({b}^{2}) }^{2} .

↝ {( {a}^{2} + {b}^{2} ) }^{2} - 4 {a}^{2} {b}^{2}

↝ { ({a}^{2} + {b}^{2} )}^{2} - ( {2ab)}^{2}

↝ {a}^{4} + {b}^{4} = ( {a}^{2} + {b}^{2} + 2ab)( {a}^{2} + {b}^{2} - 2ab)

↝( {a}^{2} + 2ab + {b}^{2} )( {a}^{2} - 2ab + {b}^{2} ) = ( {a}^{2} + pab + {b}^{2} )( {a}^{2} - qab + {b}^{2} )

ᏟϴᎷᏢᎪᎡᏆΝᏀ ᏴϴͲᎻ ͲᎻᎬ ՏᏆᎠᎬ:-

we get p=2 & q =2

∴pq = 2 {x}^{2} = 4∴pq=2x2=4

ᎻϴᏢᎬ ᏆͲ ᎻᎬᏞᏢՏ ᎽϴႮ

ͲᎻᎪΝᏦ ᎽϴႮ

Similar questions