Math, asked by Anonymous, 7 months ago

Q:-solve this and then find pq
 {a}^{4} + {b}^{4} = ( {a}^{2} + pab + {b}^{2} )( {a}^{2} - qab + {b}^{2} )

Answers

Answered by Anonymous
4

Step-by-step explanation:

\red{\bold{\underline{\underline{QUESTION:-}}}}

Q:-solve this and then find pq

 {a}^{4} + {b}^{4} = ( {a}^{2} + pab + {b}^{2} )( {a}^{2} - qab + {b}^{2} )

\huge\tt\underline\blue{Answer }

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

══════════XXX═════════════

⟹ {a}^{4} +  {b}^{4}   =  { ({a}^{2} )}^{2}  +  {( {b}^{2} )}^{2}

⟹ {( {a}^{2} +  {b}^{2} ) }^{2}  - 4 {a}^{2}  {b}^{2} </p><p></p><p>[tex]⟹ { ({a}^{2}  +  {b}^{2} )}^{2}  - ( {2ab)}^{2}

⟹ {a}^{4}  +  {b}^{4}  = ( {a}^{2}  +  {b}^{2}  + 2ab)( {a}^{2}  +  {b}^{2}  - 2ab)

⟹( {a}^{2}  + 2ab +  {b}^{2} )( {a}^{2}  - 2ab +  {b}^{2} ) = ( {a}^{2}  + pab +  {b}^{2} )( {a}^{2}  - qab +  {b}^{2} )

On comparing both sides :-

we get p=2 & q =2

∴pq = 2 {x}^{2}  = 4

══════════XXX═════════════

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Answered by sk181231
0

Answer:

Given,

Area of rectangle = 25x2 – 35x + 12

We know, area of rectangle = length × breadth

So, by factoring 25x2 – 35x + 12, the length and breadth can be obtained.

25x2 – 35x + 12 = 25x2 – 15x – 20x + 12

=> 25x2 – 35x + 12 = 5x(5x – 3) – 4(5x – 3)

=> 25x2 – 35x + 12 = (5x – 3)(5x – 4)

So, the length and breadth are (5x – 3)(5x – 4).

Now, perimeter = 2(length + breadth)

So, perimeter of the rectangle = 2[(5x – 3)+(5x – 4)]

= 2(5x – 3 + 5x – 4) = 2(10x – 7) = 20x – 14

So, the perimeter = 20x – 14

Similar questions