Math, asked by Anonymous, 8 months ago

Q:-solve this and then find pq
 {a}^{4} + {b}^{4} = ( {a}^{2} + pab + {b}^{2} )( {a}^{2} - qab + {b}^{2} )____________

Answers

Answered by 9edivyakritipu103
1

Answer:

Q:-solve this and then find pq

{a}^{4} + {b}^{4} = ( {a}^{2} + pab + {b}^{2} )( {a}^{2} - qab + {b}^{2} )a

4

+b

4

=(a

2

+pab+b

2

)(a

2

−qab+b

2

)

\huge\tt\underline\blue{Answer }

Answer

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

══════════XXX═════════════

⟹ {a}^{4} + {b}^{4} = { ({a}^{2} )}^{2} + {( {b}^{2} )}^{2}⟹a

4

+b

4

=(a

2

)

2

+(b

2

)

2

⟹ {( {a}^{2} + {b}^{2} ) }^{2} - 4 {a}^{2} {b}^{2} [tex]⟹ { ({a}^{2} + {b}^{2} )}^{2} - ( {2ab)}^{2}⟹(a

2

+b

2

)

2

−4a

2

b

2

[tex]⟹(a

2

+b

2

)

2

−(2ab)

2

⟹ {a}^{4} + {b}^{4} = ( {a}^{2} + {b}^{2} + 2ab)( {a}^{2} + {b}^{2} - 2ab)⟹a

4

+b

4

=(a

2

+b

2

+2ab)(a

2

+b

2

−2ab)

⟹( {a}^{2} + 2ab + {b}^{2} )( {a}^{2} - 2ab + {b}^{2} ) = ( {a}^{2} + pab + {b}^{2} )( {a}^{2} - qab + {b}^{2} )⟹(a

2

+2ab+b

2

)(a

2

−2ab+b

2

)=(a

2

+pab+b

2

)(a

2

−qab+b

2

)

On comparing both sides :-

we get p=2 & q =2

∴pq = 2 {x}^{2} = 4∴pq=2x

2

=4

══════════XXX═════════════

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Attachments:
Answered by suggulachandravarshi
6

Answer:

a⁴- b⁴ = (a²)² - (b²)² = (a² + b²)(a² - b²) = (a² + b²)(a + b)(a b); three factors.

a⁴-b⁴ = ((a+b?)(a+b)(a-b) = (a? + ab(a+b)+ b°{a-b); two factors.

a*-b* = ((a+b°(a-b){a+b) = {a-ab(a-b)-6)

(a+b); two factors.

Similar questions