Math, asked by Anonymous, 8 months ago

Q:-solve this equation and also verify_________________
 \frac{1}{2} - \frac{1}{3} (x - 1) + 2 = 0

Answers

Answered by Anonymous
2

Step-by-step explanation:

\red{\bold{\underline{\underline{QUESTION:-}}}}

Q:-solve and verify the equation

 \frac{1}{2} - \frac{1}{3} (x - 1) + 2 = 0

\huge\tt\underline\blue{Answer }

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

══════════XXX═════════════

⟹ \frac{1}{2}  -  \frac{1}{3} (x - 1) + 2 = 0</p><p>

⟹</p><p> \frac{3 - 2(x - 1) + 2}{6}  = 0

⟹</p><p> \frac{1}{6} (x - 1) + 2 = 0

⟹</p><p>(x - 1) + 2 = 0

⟹</p><p>x - 1 =  - 2

⟹</p><p>x =  - 2 + 1

⟹</p><p>x =  - 1

CHECK:-

⟹ \frac{1}{2}  -  \frac{1}{3} ( - 1 - 1) + 2</p><p>

⟹</p><p> \frac{3 - 2( - 2) + 2}{6}  = 0

⟹</p><p> \frac{1}{6} ( - 2) + 2 = 0

⟹</p><p> \frac{0}{6}  = 0

⟹</p><p>0 = 0

THEREFORE,L.H.S=R.H.S

VERIFIED ✔️

══════════XXX═════════════

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Answered by ItzDeadDeal
3

Answer:

---------------'--XXX═════════════

⟹ \frac{1}{2} - \frac{1}{3} (x - 1) + 2

⟹ \frac{3 - 2(x - 1) + 2}{6} = 0

⟹ \frac{1}{6} (x - 1) + 2 = 0

⟹ (x - 1) + 2 = 0

⟹ x - 1 = - 2

⟹ x = - 2 + 1

⟹ x = - 1

CHECK:-

⟹ \frac{1}{2} - \frac{1}{3} ( - 1 - 1) + 2

⟹ \frac{3 - 2( - 2) + 2}{6} = 0

⟹ \frac{1}{6} ( - 2) + 2 = 0

⟹ \frac{0}{6}

THEREFORE,L.H.S=R.H.S

VERIFIED ✔️

══════════XXX═════════════

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Similar questions