Q:-TanA=1/3, find the other trigonometrical ratios
Answers
Answer:
Q:-TanA=1/3, find the other trigonometrical ratios
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️
════════════XXX═══════════
Given :-
∴
∴
∴
════════════XXX═══════════
HOPE IT HELPS YOU..
_____________________
Thankyou:)
Step-by-step explanation:
Answer:
\huge{\bold☘}\mathfrak\pink{\bold{\underline{{ ℘ɧεŋσɱεŋศɭ}}}}{\bold☘}☘
℘ɧεŋσɱεŋศɭ
☘
\red{\bold{\underline{\underline{QUESTION:-}}}}
QUESTION:−
Q:-TanA=1/3, find the other trigonometrical ratios
\huge\tt\underline\blue{Answer }
Answer
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️
════════════XXX═══════════
Given :-
⟹TanA= \frac{1}{3}⟹TanA=
3
1
∴ ⟹CotA = \frac{3}{1} = 3⟹CotA=
1
3
=3
⟹Tan A= \frac{1}{3}⟹TanA=
3
1
{Tan}^{2} A = \frac{1}{9}Tan
2
A=
9
1
⟹1 + {Tan}^{2} A = 1 + \frac{1}{9} = \frac{9 + 1}{9} = \frac{10}{9}⟹1+Tan
2
A=1+
9
1
=
9
9+1
=
9
10
∴ ⟹SecA = \sqrt{ \frac{10}{9} }⟹SecA=
9
10
⟹CosA = \frac{3}{ \sqrt{10} }⟹CosA=
10
3
⟹ {Cos}^{2} A= \frac{9}{10}⟹Cos
2
A=
10
9
⟹1 - {Cos}^{2} A = 1 - \frac{9}{10}⟹1−Cos
2
A=1−
10
9
⟹ {Sin}^{2} A = \frac{10 - 9}{10} = \frac{1}{10}⟹Sin
2
A=
10
10−9
=
10
1
⟹SinA = \sqrt{ \frac{1}{10} } = \frac{1}{ \sqrt{10} }⟹SinA=
10
1
=
10
1
∴⟹CosecA = \sqrt{10}⟹CosecA=
10
════════════XXX═══════════
HOPE IT HELPS YOU..
_____________________
Thankyou:)