Physics, asked by Anonymous, 3 months ago

Q] The amplitude of the wave is represented by \sf y =0.2  \sin \: 4\pi\Bigg[ \dfrac{1}{0.08}  -  \dfrac{x}{0.8} \Bigg] in SI units. Find a) Wavelength b) Frequency c) Amplitude of wave

Answers

Answered by Anonymous
21

Answers :

a) Wavelength = 0.4m

b) Frequency = 25Hz

c) Amplitude = 0.2m

\rule{300}{2}

Generalized equation of SHM is :

 \sf y = Asin( \omega t + k) \\  \\  \implies \sf \: y = Asin( \frac{2\pi}{T} t  -   \dfrac{x}{ \lambda} ) -  -  -  -  -  - (1)

Given Equation,

 \sf y =0.2 sin \: 4\pi\Bigg( \dfrac{t}{0.08} - \dfrac{x}{0.8} \Bigg)  \\  \\  \implies \sf y =0.2 sin \:2\pi\Bigg( \dfrac{2}{0.08} \times t - \dfrac{2x}{0.8} \Bigg)  \\  \\  \implies  \sf y =0.2 sin \:2\pi\Bigg( \dfrac{t}{0.04} - \dfrac{x}{0.4} \Bigg) -  -  -  -  -  - (2)

Comparing equations (1) and (2),

Wavelength = 0.4m

Amplitude = 0.2m

Time Period = 0.04s

We know that,

\sf Frequency = \dfrac{1}{Time \ Period}

Thus,

 \sf \nu  =  \dfrac{1}{0.04}  \\  \\  \longrightarrow \sf \nu =  \dfrac{ {10}^{2} }{4}  \\  \\ \longrightarrow \boxed{ \boxed{ \sf \nu =  25 {s}^{ - 1} }}


Anonymous: Superb :o
Answered by XxHappiestWriterxX
19

Solution

Generalized equation of SHM :

 \sf \: y = Asin ( wt+ k )

 \sf \: y = Asin ( \frac{2\pi} {T}t -  \frac{x}{λ}  )...(1)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \fbox  \pink{equation,}

 \sf \: y = 0.2  \: sin \:  4π ( \frac{t}{0.08}  -  \frac{x}{0.8} )

 \sf \: y = 0.2  \: sin  \: 2π \:  ( \frac{ 2}{0.08} × t -  \frac{2x}{0.8} )

 \sf \: y = 0.2 \: sin \: 2π  \: (  \frac{t}{0.04} -  \frac{ x}{0.4})...(2)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \fbox \red{equation (1) and (2),}

 \sf\colorbox{pink}{wevelength = 0.4 m}

 \sf \colorbox{skyblue}{amplitude= 0.2 m}

 \sf \colorbox{yellow}{timeperiod = 0.04 m}

So :

 \boxed { \sf \: Frequency =  \frac{1}{T.p}  }

Then :

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \sf \: V = \frac{1}{0.04}  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \sf \: V = \frac{10²}{4} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \fbox \blue{ \sf \: V = 25ѕ-1}

Attachments:
Similar questions