Math, asked by emilylewis70, 5 months ago

Q.The diameter of the moon is 1/4 of the diameter of the earth.
(i).Find the ratio of their surface area .
(ii).Find the ratio of their volume.

pls answer this question​

Answers

Answered by MяMαgıcıαη
52

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

{ \bold { \underline{\large{Given :  - }}}} \:

\bold{The\:diameter\:of\: moon \:is \:\dfrac{1}{4}\: of\: diameter \:of \:earth.}

{ \bold { \underline{\large{To\:Find :  - }}}} \:

\bold{Ratio\: of\: their\: surface\: areas.}

\bold{Ratio\: of\: their\: volume.}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\large\boxed{\boxed{\tt{So\:let's \:do\:it\:!}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

{ \bold { \underline{\large{Solution :  - }}}} \:

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\bold{Let \:diameter\:of\:earth\:\leadsto\:8x}

\therefore{\bold{Radius(r_{1}) \:of\: earth \:\leadsto\: \dfrac{8x}{2}\:\leadsto\:\cancel{\dfrac{8x}{2}}\:\leadsto\: \boxed{4x}}}

Now,

\bold{Diameter\:of\:moon\:is \:\dfrac{1}{4}\: of\: diameter \:of \:earth}

\therefore{\bold{Diameter\:of\:moon\:\leadsto\:\dfrac{8x}{4}\:\leadsto\:\cancel{\dfrac{8x}{4}}\:\leadsto\:\boxed{2x}}}

\bold{It's \:radius(r_{2})\:\leadsto\:\dfrac{2x}{2} \:\leadsto\:\cancel{\dfrac{2x}{2}}\:\leadsto\:\boxed{x}}

{ \bold { \underline{Ratio\:of\:their\:surface\:areas :  - }}} \:

ㅤㅤㅤ\longmapsto \bold{\dfrac{Surface\:area_{(moon)}}{Surface\:area_{(Earth)}}}

ㅤㅤㅤ\longmapsto \bold{\dfrac{4\pi (r_{2})^2}{4\pi (r_{1})^2}}

ㅤㅤㅤ\longmapsto \bold{\dfrac{4\pi}{4\pi}\:\times\:\dfrac{(r_{2})^2}{(r_{1})^2}}

ㅤㅤㅤ\longmapsto \bold{\cancel{\dfrac{4\pi}{4\pi}}\:\times\:\dfrac{(r_{2})^2}{(r_{1})^2}}

ㅤㅤㅤ\longmapsto \bold{\dfrac{(r_{2})^2}{(r_{1})^2}}

ㅤㅤㅤ\longmapsto \bold{\dfrac{(x)^2}{(4x)^2}}

ㅤㅤㅤ\longmapsto \bold{\dfrac{x^2}{16x^2}}

ㅤㅤㅤ\longmapsto \bold{\dfrac{1}{16}\:\times\:\dfrac{x^2}{x^2}}

ㅤㅤㅤ\longmapsto \bold{\dfrac{1}{16}\:\times\:\cancel{\dfrac{x^2}{x^2}}}

ㅤㅤㅤ\longmapsto \boxed{\bold{\dfrac{1}{16}}}

\boxed {\frak {\therefore \purple {Ratio\:of\:their\:surface\:areas\:\leadsto\:1\:\ratio\:16}}}\:\orange\bigstar

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\bold{Let \:diameter\:of\:earth\:\leadsto\:16x}

\therefore{\bold{Radius(r_{1}) \:of\: earth \:\leadsto\: \dfrac{16x}{2}\:\leadsto\:\cancel{\dfrac{16x}{2}}\:\leadsto\: \boxed{8x}}}

Now,

\bold{Diameter\:of\:moon\:is \:\dfrac{1}{4}\: of\: diameter \:of \:earth}

\therefore{\bold{Diameter\:of\:moon\:\leadsto\:\dfrac{16x}{4}\:\leadsto\:\cancel{\dfrac{16x}{4}}\:\leadsto\:\boxed{4x}}}

\bold{It's \:radius(r_{2})\:\leadsto\:\dfrac{4x}{2} \:\leadsto\:\cancel{\dfrac{4x}{2}}\:\leadsto\:\boxed{2x}}

{ \bold { \underline{Ratio\:of\:their\:volumes :  - }}} \:

ㅤㅤㅤ\longmapsto \bold{\dfrac{Volume_{(moon)}}{Volume_{(Earth)}}}

ㅤㅤㅤ\longmapsto \bold{\dfrac{4/3\pi (r_{2})^3}{4/3\pi (r_{1})^3}}

ㅤㅤㅤ\longmapsto \bold{\dfrac{4/3\pi}{4/3\pi}\:\times\:\dfrac{(r_{2})^3}{(r_{1})^3}}

ㅤㅤㅤ\longmapsto \bold{\cancel{\dfrac{4/3\pi}{4/3\pi}}\:\times\:\dfrac{(r_{2})^3}{(r_{1})^3}}

ㅤㅤㅤ\longmapsto \bold{\dfrac{(r_{2})^3}{(r_{1})^3}}

ㅤㅤㅤ\longmapsto \bold{\dfrac{(2x)^3}{(8x)^3}}

ㅤㅤㅤ\longmapsto \bold{\dfrac{2x}{8x}\:\times\:\dfrac{2x}{8x}\:\times\:\dfrac{2x}{8x}}

ㅤㅤㅤ\longmapsto \bold{\cancel{\dfrac{2x}{8x}}\:\times\:\cancel{\dfrac{2x}{8x}}\:\times\:\cancel{\dfrac{2x}{8x}}}

ㅤㅤㅤ\longmapsto \bold{\dfrac{1}{4}\:\times\:\dfrac{1}{4}\:\times\:\dfrac{1}{4}}

ㅤㅤㅤ\longmapsto \bold{\dfrac{1\:\times\:1\:\times\:1}{4\:\times\:4\:\times\:4}}

ㅤㅤㅤ\longmapsto \boxed{\bold{\dfrac{1}{64}}}

\boxed {\frak {\therefore \purple {Ratio\:of\:their\:surface\:areas\:\leadsto\:1\:\ratio\:64}}}\:\orange\bigstar

\large\underline{\boxed{\bold\blue{SOLVED}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

{ \bold { \underline{\large{Formulas\:  that \:we\:used\:above :  - }}}} \:

\bold{Surface\:area\:of\:sphere\:=\:4\pi r^2}

\bold{Volume\:of\:sphere\:=\:\dfrac{4}{3}\pi r^3}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

{ \bold { \underline{\large\red{Note :  - }}}} \:

•Dear user , if u are site (brainly.in) user. Then answer will be correctly displayed to you.

•But if you uses the app, please swipe right of the screen to see the full answer.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━


Anonymous: Awesome!
EliteSoul: GReat
Answered by SugaryCherrie
14

{ \bold { \underline{\large{Given : - }}}}

\bold{The\:diameter\:of\: moon \:is \:\dfrac{1}{4}\: of\: diameter \:of \:earth.}

{ \bold { \underline{\large{To\:Find : - }}}}

◍ \bold{Ratio\: of\: their\: surface\: areas.}

◍ \bold{Ratio\: of\: their\: volume.}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\large\boxed{\boxed{\tt{So\:let's \:do\:it\:!}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

{ \bold { \underline{\large{Solution : - }}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\bold{Let \:diameter\:of\:earth\:\leadsto\:8x}

\therefore{\bold{Radius(r_{1}) \:of\: earth \:\leadsto\: \dfrac{8x}{2}\:\leadsto\:\cancel{\dfrac{8x}{2}}\:\leadsto\: \boxed{4x}}}

Now,

\bold{Diameter\:of\:moon\:is \:\dfrac{1}{4}\: of\: diameter \:of \:earth}

\therefore{\bold{Diameter\:of\:moon\:\leadsto\:\dfrac{8x}{4}\:\leadsto\:\cancel{\dfrac{8x}{4}}\:\leadsto\:\boxed{2x}}}

\bold{It's \:radius(r_{2})\:\leadsto\:\dfrac{2x}{2} \:\leadsto\:\cancel{\dfrac{2x}{2}}\:\leadsto\:\boxed{x}}

◍ { \bold { \underline{Ratio\:of\:their\:surface\:areas : - }}}

ㅤㅤㅤ\longmapsto⟼ \bold{\dfrac{Surface\:area_{(moon)}}{Surface\:area_{(Earth)}}}

ㅤㅤㅤ\longmapsto⟼ \bold{\dfrac{4\pi (r_{2})^2}{4\pi (r_{1})^2}}

ㅤㅤㅤ\longmapsto⟼ \bold{\dfrac{4\pi}{4\pi}\:\times\:\dfrac{(r_{2})^2}{(r_{1})^2}}

ㅤㅤㅤ\longmapsto⟼ \bold{\cancel{\dfrac{4\pi}{4\pi}}\:\times\:\dfrac{(r_{2})^2}{(r_{1})^2}}

ㅤㅤㅤ\longmapsto⟼ \bold{\dfrac{(r_{2})^2}{(r_{1})^2}}

ㅤㅤ\longmapsto⟼ \bold{\dfrac{x^2}{16x^2}}

ㅤㅤㅤ\longmapsto⟼ \bold{\dfrac{1}{16}\:\times\:\dfrac{x^2}{x^2}}

ㅤㅤㅤ\longmapsto⟼ \bold{\dfrac{1}{16}\:\times\:\cancel{\dfrac{x^2}{x^2}}}

ㅤㅤㅤ\longmapsto⟼ \boxed{\bold{\dfrac{1}{16}}}

\boxed {\frak {\therefore \purple {Ratio\:of\:their\:surface\:areas\:\leadsto\:1\:\ratio\:16}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\bold{Let \:diameter\:of\:earth\:\leadsto\:16x}

\therefore{\bold{Radius(r_{1}) \:of\: earth \:\leadsto\: \dfrac{16x}{2}\:\leadsto\:\cancel{\dfrac{16x}{2}}\:\leadsto\: \boxed{8x}}}

Now,

\bold{Diameter\:of\:moon\:is \:\dfrac{1}{4}\: of\: diameter \:of \:earth}

\therefore{\bold{Diameter\:of\:moon\:\leadsto\:\dfrac{16x}{4}\:\leadsto\:\cancel{\dfrac{16x}{4}}\:\leadsto\:\boxed{4x}}}

\bold{It's \:radius(r_{2})\:\leadsto\:\dfrac{4x}{2} \:\leadsto\:\cancel{\dfrac{4x}{2}}\:\leadsto\:\boxed{2x}}

◍ { \bold { \underline{Ratio\:of\:their\:volumes : - }}}

ㅤㅤㅤ\longmapsto⟼ \bold{\dfrac{Volume_{(moon)}}{Volume_{(Earth)}}}

ㅤㅤㅤ\longmapsto⟼ \bold{\dfrac{4/3\pi (r_{2})^3}{4/3\pi (r_{1})^3}}

ㅤㅤㅤ\longmapsto⟼ \bold{\dfrac{4/3\pi}{4/3\pi}\:\times\:\dfrac{(r_{2})^3}{(r_{1})^3}}

ㅤㅤㅤ\longmapsto⟼ \bold{\cancel{\dfrac{4/3\pi}{4/3\pi}}\:\times\:\dfrac{(r_{2})^3}{(r_{1})^3}}

ㅤㅤㅤ\longmapsto⟼ \bold{\dfrac{(r_{2})^3}{(r_{1})^3}}

ㅤㅤㅤ\longmapsto⟼ \bold{\dfrac{(2x)^3}{(8x)^3}}

ㅤㅤㅤ\longmapsto⟼ \bold{\dfrac{2x}{8x}\:\times\:\dfrac{2x}{8x}\:\times\:\dfrac{2x}{8x}}

ㅤㅤㅤ\longmapsto⟼ \bold{\cancel{\dfrac{2x}{8x}}\:\times\:\cancel{\dfrac{2x}{8x}}\:\times\:\cancel{\dfrac{2x}{8x}}}

ㅤㅤㅤ\longmapsto⟼ \bold{\dfrac{1}{4}\:\times\:\dfrac{1}{4}\:\times\:\dfrac{1}{4}}

ㅤㅤㅤ\longmapsto⟼ \bold{\dfrac{1\:\times\:1\:\times\:1}{4\:\times\:4\:\times\:4}}

ㅤㅤㅤ\longmapsto⟼\boxed{\bold{\dfrac{1}{64}}}

\boxed {\frak {\therefore \purple {Ratio\:of\:their\:surface\:areas\:\leadsto\:1\:\ratio\:64}}}\:\orange\bigstar

\large\underline{\boxed{\bold\blue{SOLVED}}}

{ \bold { \underline{\large{Formulas\: that \:we\:used\:above : - }}}}

\bold{Surface\:area\:of\:sphere\:=\:4\pi r^2}

\bold{Volume\:of\:sphere\:=\:\dfrac{4}{3}\pi r^3}

Similar questions