Math, asked by Anonymous, 14 hours ago

Q. The interior of a building is in the form of a right circular cylinder of diameter 4.2 m and height 4 m surrounded by a cone. The vertical height of the cone is 2.1 m. Find the outer surface area and volume of the building. ( Use  \pi =  \frac{22}{7}  )

- Don't spam! ​

Answers

Answered by YourHelperAdi
13

Question :

The interior of a building is in the form of a right circular cylinder of a diameter 4.2 m and height  4 m, surmounted by a cone. The vertical height of the cone is 2.1 m. Find the outer surface area and volume of the building

Given :

  • Hieght of Cylinder = 4m
  • Diameter of Cylinder = 4.2m
  • Hieght of Cone = 2.1m
  • Diameter of Cone = 4.2m

To Find :

  • Outer surface area of building?
  • Volume of the building?

Formula To Be Applied:

We will use the formula of CSA and volume of Cylinder:

  • Volume = pi(r²h)
  • CSA = 2(pi)rh

We will use the formula of LSA and volume of Cone :

  • Volume = pi(r²)h/3
  • LSA = (pi)rl

Solution :

Given, the Cylinder is surmounted by a cone .So the volume of building is the sum of volume of cone and Cylinder.

 {\implies\displaystyle \rm Volume_{building} = \displaystyle \rm Volume_{cone} + \displaystyle \rm Volume_{cylinder}}

But, Outer surface area of building is the sum of LSA of Cone and CSA of cylinder

 { \implies \displaystyle \rm osa_{building} = \displaystyle \rm csa_{cylinder} + \displaystyle \rm lsa_{cone}}

Here, OSA = outer surface area

__________________________

1] Volume Of Cylinder :

Given, Diameter of base = 4.2m

Hieght = 4m

We know that :

Radius = d/2

or, r = 2.1 cm

So, Volume = pi(r²h)

{ \implies\displaystyle \rm Volume_{cylinder} =  \pi \times 2.1 \times 2.1 \times 4}

 {\implies \displaystyle \rm Volume_{cylinder} =  \frac{22}{7} \times 2.1 \times 2.1 \times 4}

 {\implies \displaystyle \rm Volume_{cylinder} = 22 \times 0.3 \times 2.1 \times 4}

 \red{ \underline{ \boxed{  \therefore\displaystyle \rm Volume_{cylinder} = 55.44 {m}^{3} }}}

__________________________

2] Volume Of Cone :

Given, Diameter of Cone = 4.2m

Hieght = 2.1 cm

We know that :

Radius = d/2

or, r = 2.1cm

So, Volume = (pi)r²h/3

{ \implies \displaystyle \rm Volume_{cone} =  \pi \times 2.1 \times 2.1 \times 2.1 \times  \frac{1}{3} }

{ \implies \displaystyle \rm Volume_{cone} =  \frac{22}{7}  \times 2.1 \times 2.1 \times 2.1 \times  \frac{1}{3} }

{ \implies \displaystyle \rm Volume_{cone} =  \frac{22}{7}  \times 2.1 \times 2.1 \times 0.7}

{ \implies\displaystyle \rm Volume_{cone} = 22 \times 2.1 \times 2.1 \times 0.1}

{ \implies \displaystyle \rm Volume_{cone} = 2.2 \times 2.1 \times 2.1}

 \blue{ \underline{ \boxed{  \therefore \displaystyle \rm Volume_{cone} = 9.70 {m}^{3} }}}

__________________________

3] CSA of Cylinder :

Radius of cylinder = 2.1m

Hieght = 4m

So, CSA = 2pi(rh)

 {\implies \displaystyle \rm csa_{cylinder} = 2 \times  \frac{22}{7}  \times 2.1 \times 4}

{ \implies \displaystyle \rm csa_{cylinder} =  2 \times 22 \times 0.3 \times 4}

 \implies \displaystyle \rm csa_{cylinder} = 44 \times 1.2

  \green{ \underline{ \boxed{\implies \displaystyle \rm csa_{cylinder} = 52.8 {m}^{2} }}}

__________________________

4] LSA of Cone :

Radius of cone = 2.1m

Hieght = 2.1m

So, Lateral Lenght² = R²+H²

or, L² = 2.1²+2.1²

or, L² = 2(2.1)²

or, L = 2.12

so, LSA = (pi)rl

  \implies \displaystyle \rm lsa_{cone} =  \frac{22}{7}  \times 2.1 \times 2.1 \sqrt{2}

 \implies \displaystyle \rm lsa_{cone} = 22 \times 0.3 \times 2.1 \sqrt{2}

 \pink{  \underline{ \boxed{ \therefore \displaystyle \rm lsa_{cone} = 19.60 {m}^{2} }}}

__________________________

5] Volume Of The Building:

As we had already stated that :

{\implies\displaystyle \rm Volume_{building} = \displaystyle \rm Volume_{cone} + \displaystyle \rm Volume_{cylinder}}

 {\implies\displaystyle \rm Volume_{building} = \displaystyle \rm9.70 {m}^{3}  + \displaystyle \rm55.44 {m}^{3} }

 \orange{ \underline{ \boxed{  \therefore {\displaystyle \rm Volume_{building} =65.14 {m}^{3} }}}}

Hence, Volume of building = 65.14m³

__________________________

6] OSA of Building :

as we have already stated that :

{ \implies \displaystyle \rm osa_{building} = \displaystyle \rm csa_{cylinder} + \displaystyle \rm lsa_{cone}}

{ \implies \displaystyle \rm osa_{building} = \displaystyle \rm 52.8 {m}^{2}  + \displaystyle \rm 19.6 {m}^{2} }

  \purple { \underline{ \boxed{ \therefore \displaystyle \rm osa_{building} = 72.4 {m}^{2} }}}

Hence, OSA of Building = 72.4 m²

Similar questions