Math, asked by Truebrainlian9899, 7 months ago

Q- The present ages of A and B are in the ratio 7:5 , 10 years later their ages will be in ratio 9:7 . Find their present ages.

Answers

Answered by Anonymous
42

\huge\mathfrak{\bf{\underline{\underline{\blue{Solution \ :}}}}}

\longrightarrow \mathsf{Let  \: The \:  Present \:  Age \:  of  \: A = \underline{ 7x \: Years}}

\longrightarrow \mathsf{Let  \: The \:  Present \:  Age  \: of \:  B = \underline{5x \: Years}}

 \longrightarrow\mathsf{After  \: 10  \: Years \:  Their \:  Age  \: Will  \: Be ,}

\longrightarrow \mathsf{A = 7x + 10  \: Years\: and}

\longrightarrow \mathsf{B = 5x + 10  \:   Years}

\longrightarrow \mathsf{The \:  Ratios  \: Of  \: Their \:  Ages  \: After  \: 10  \: Years \:  is  \: 9:7}

 \therefore \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \mathsf{ \frac{7x + 10}{5x + 10}  =  \frac{9}{7} }  \\

 \implies \:  \mathsf{49x - 45x = 90 - 70}

 \implies \:  \mathsf{ \cancel4 ^{1} x =  \cancel{20} \:  ^{5} }

 \implies \: \boxed{  \mathsf{\bold{x = 5}}}

 \mathsf{Present  \: Ages \:  of  \: A  \: = \: 7 \: × \: 5  \: = \: 35 \:  Years}

 \mathsf{Present  \: Ages \:  of   \: B= \: 5\: × \: 5 \:  =25  \: Years}</p><p>

\huge{\dag} \: {\sf{\purple{\mathtt{ \underline{Answer}}}}} \ {\dag}

  \implies \boxed{{ \mathsf \blue{Present \:  Ages  \: of \:  (A,B) =  (35,25)}}}

Answered by Anonymous
91

\Huge\mathbb{\color{maroon}{✩SOLUTION:-}}

\:

\LARGE\mathbb{\color{goldenrod}{✩GIVEN:-}}

\longrightarrow Ratios of a and b = \mathtt{7:5}

\longrightarrow Ratios of ages after 20 yrs = \mathtt{9:7}

\LARGE\mathbb{\color{goldenrod}{✩TOFIND:-}}

\longrightarrow\mathtt{The\: present\:ages\:of \:a\:and\:b}

\LARGE\mathbb{\color{goldenrod}{✩CONSEDERING:-}}

\longrightarrow\mathtt\red{Age\:of\:a\:-\:7x}

\longrightarrow\mathtt\red{Age\:of\:b\:-\:5x}

\:

Now , according to question , it is said that after 10 yrs the ratios of ages will be 9:7 .

so , the age of a after 10 yrs will be \mathtt\red{(7x+10)} and the age B after 10 yrs will be \mathtt\red{(5x+10)}

But we know that the ratio of ages after 10 yrs is 9:7 , so by putting it together we get equation as :

\:

✩\implies \Large{\frac{7x+10}{5x+10}} = \Large{\frac{9}{7}}

\:

✩\implies \Large{\frac{7x+10}{5x+10}} × 7 = \Large{\frac{9}{7}} × 7

✩\implies \Large{\frac{49x+70}{5x+10}} = 9

✩\implies \mathtt\green{49x+70=45x+90}

✩\implies \mathtt\green{49x=45x+90-70}

✩\implies \mathtt\green{49x-45x=20}

✩\implies \mathtt\green{4x=20}

✩\implies \mathtt{x={\frac{20}{4}}}

✩\implies \large\mathtt{\green{\underline{x=05}}}

\:

Therefore ,

✩\implies A's present age = 7x = 7 × 5 = 35 yrs

✩\implies B's present age = 5x = 5 × 5 = 25 yrs

\:

Similar questions