Math, asked by sonu2034, 1 year ago

Q. Two numbers are in the ratio 2:5. When 7 is added to each of them, the ratio is changed to 9: 19. Find the numbers
step \: by \: step \: answer

Answers

Answered by Sauron
38

\mathfrak{\large{\underline{\underline{Answer :-}}}}

The two numbers are 20 and 50.

\mathfrak{\large{\underline{\underline{Explanation :-}}}}

Given :

The ratio of the Numbers = 2 : 5

The new ratio when 7 is added to them = 9 : 19

To Find :

The Numbers

Solution :

\textbf{\small{\underline{Consider the Original Numbers as -}}}

  • 2x
  • 5x

\rule{300}{1.5}

\textbf{\small{\underline{According to the Question -}}}

  • (2x + 7) = 9
  • (5x + 7) = 19

\rule{300}{1.5}

\boxed{\tt{\frac{(2x + 7)}{(5x + 7)} =  \frac{9}{19}}}

\tt{\longrightarrow} \: \dfrac{(2x + 7)}{(5x + 7)} =  \dfrac{9}{19}

\tt{\longrightarrow} \:19(2x + 7) = 9(5x + 7)

\tt{\longrightarrow} \:38x + 133 = 45x + 63

\tt{\longrightarrow} \:38x - 45x = 63 - 113

\tt{\longrightarrow} \:\cancel -  \: 7x = \cancel - \:  70

\tt{\longrightarrow} \:x =  \dfrac{70}{7}

\tt{\longrightarrow} \:x = 10

\rule{300}{1.5}

Value of 2x

\tt{\longrightarrow} \:2 \times 10

\tt{\longrightarrow} \:20

One Number = 20

\rule{300}{1.5}

Value of 5x

\tt{\longrightarrow} \:5 \times 10

\tt{\longrightarrow} \:50

Second Number = 50

\therefore The two numbers are 20 and 50.

\rule{300}{1.5}

\mathfrak{\large{\underline{\underline{Verification :-}}}}

\tt{\longrightarrow} \: \dfrac{20 + 7}{50 + 7} =  \dfrac{9}{19}

\tt{\longrightarrow} \: \dfrac{27 \div 3}{57 \div 3} =  \dfrac{9}{19}

\tt{\longrightarrow} \: \dfrac{9}{19} =  \dfrac{9}{19}

\therefore The two numbers are 20 and 50.

Answered by Anonymous
2

Answer:

The two numbers are 20 and 50.

Explanation:

Given :

The ratio of the Numbers = 2 : 5

The new ratio when 7 is added to them = 9 : 19

To Find :

The Numbers.

Solution :

→ Consider the Original Numbers as:

  • 2x
  • 5x

→ According to the Question:

  • (2x + 7) = 9
  • (5x + 7) = 19

 \boxed{\tt{\frac{(2x + 7)}{(5x + 7)} = \frac{9}{19}}}

\tt{\longrightarrow} \: \dfrac{(2x + 7)}{(5x + 7)} = \dfrac{9}{19}

\tt{\longrightarrow} \:19(2x + 7) = 9(5x + 7)

\tt{\longrightarrow} \:38x + 133 = 45x + 63

\tt{\longrightarrow} \:38x - 45x = 63 - 113

\tt{\longrightarrow} \:\cancel - \: 7x = \cancel - \: 7x

\tt{\longrightarrow} \:x = \dfrac{70}{7}

\tt{\longrightarrow} \:x = 10

→ Value of 2x

\tt{\longrightarrow} \:2 \times 10

\tt{\longrightarrow} \:20

One Number = 20

→ Value of 5x

\tt{\longrightarrow} \:5 \times 10

\tt{\longrightarrow} \:50

Second Number = 50

∴ The two numbers are 20 and 50.

Similar questions