Physics, asked by Anonymous, 3 months ago

Q] Two wheels of moment of inertia 4 kgm² rotate side by side at the rate of 120 rev/min and 240 rev/min respectively in the opposite directions. If now both the wheels are coupled by means of a weightless shaft so that both the wheels rotate with a common angular speed.Calculate the new speed of rotation​

Answers

Answered by Ekaro
40

Given :

Two wheels of moment of inertia 4 kgm² rotate side by side at the rate of 120 rpm and 240 rpm respectively in the opposite directions.

Both wheels are brought in contact so that they rotate with a common angular speed.

To Find :

New speed of rotation.

Concept :

Since no external torque acts on the whole system throughout the coupling process; angular momentum of the whole system is conserved.

  • Angular momentum is measured as the product of moment of inertia and angular velocity.
  • It is a scalar quantity having only magnitude.

Formula : \underline{\boxed{\bf{\gray{L=I\cdot\omega}}}}

• L denotes angular momentum

• I denotes moment of inertia

• ω denotes angular velocity

Calculation :

\sf:\implies\:I\omega_1-I\omega_2=(2I)(\omega)

  • where ω denotes angular velocity of the combination and negative sign shows opposite direction of rotation.

\sf:\implies\:\omega_1-\omega_2=2\omega

\sf:\implies\:240-120=2\omega

\sf:\implies\:120=2\omega

\sf:\implies\:\omega=\dfrac{120}{2}

:\implies\:\underline{\boxed{\bf{\orange{\omega=60\:rpm}}}}


Anonymous: Thäñk yôú ! ❤️
Ekaro: Welcome! ❤️
Answered by Ridvisha
79

{ \underline{ \underline{ \huge{ \rm{ \red{SOLUTION}}}}}}

{ \dag{ \underline{ \underline{ \tt{ \orange{ \:  \: to \: find}}}}}} \\  \\ { \sf{ \:new \: speed \: of \: rotation...}}

{ \dag{ \underline{ \underline{ \tt{ \orange{  \:  \: formula \: used}}}}}} \\  \\ { \boxed{ \boxed{ \sf{ \green{angular \: momentum = I \:  \times  \: ω}}}}} \\  \\ { \sf{    \: where}} \\ { \sf{ \:  l = { \green{moment \: of \: inertia \: }}}} \\ { \sf{ \: ω  = { \green{angular \: speed}}}}

{ \dag{ \underline{ \underline{ \orange{ \tt{ \:  \: concept \: used}}}}}} \\  \\ { \boxed{ \boxed{ \green{ \sf{conservation \: of \: angular \: momentum}}}}}

The law of conservation of angular momentum states that when no external torque acts on an object, no change of angular momentum will occur.

{ \underline{ \sf{ \red{initial \: angular \: momentum}}}} { \sf{ \:  = lω2 - lω1}}

{ \sf{ \underline{ \red{final \: angular \: momentum}}}}{ \sf{ = \: l ω \:  + l ω}}

{ \boxed{ \boxed{ \green{ \sf{ω = 60 \: rev \:  {min}^{ - 1}}}}}}

Attachments:
Similar questions