Math, asked by Anonymous, 8 months ago

Q:-Use suitable identities to find the following products : (I) (X+8) (X - 10) (II) (X+4) (X+10)​

Answers

Answered by Anonymous
9

\pink{\bold{\underline{ ✪ UPSC-ASPIRANT✪ }}}

\red{\bold{\underline{\underline{Question᎓}}}}

Q:-Use suitable identities to find the following products : (I) (X+8) (X - 10) (II) (X+4) (X+10)

\huge\tt\underline\blue{Answer </p><p> }

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

════════════XXX═════════════

solving (I)

⟹(x + 8)(x - 10)

Here this identify is used:-

⟹(x + a)(x - b) =  {x}^{2}  + (a + b)x + ab

⟹(x + 8)(x - 10) =  {x}^{2}  + (8 + ( - 10))x +  - 8 \times 10

⟹ {x}^{2}  - 2x  - 80 = 0

solving (ii)

⟹(x + 4)(x + 10)

⟹(x + 4) (x - 10) =  {x}^{2}  + (4 + ( - 10))x + 4 \times  - 10

⟹ {x}^{2}  - 6x - 40 = 0

════════════XXX═════════════

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Answered by Anonymous
15

Step-by-step explanation:

 ----------------------------------------------------------------------------------------------------

Solution:

(1) (x + 8) (x –

10)

Using identity,

[(x + a) (x +

b) = x² + (a + b) x +

ab]

Here, a = 8 & b = –10

(x + 8) (x – 10)

= x²+{8+(– 10)}x +{8×(– 10)}

= x² + (8 – 10)x –

80

= x² – 2x –

80

 

 

 

(2)  Using identity,

[(x + a) (x +

b) = x² + (a + b) x +

ab]

In (x + 4) (x + 10),

 a = 4 &

b = 10

Now,

(x + 4) (x + 10)

= x² + (4 + 10)x + (4 × 10)

= x² + 14x+

40

Hope this will help you...

Similar questions