Math, asked by Anonymous, 6 months ago

Q:-Use suitable identities to find the following products : (I) (X+8) (X - 10) (II) (X+4) (X+10)

Answers

Answered by Anonymous
1

Step-by-step explanation:

\red{\bold{\underline{\underline{Question᎓}}}}

Q:-Use suitable identities to find the following products : (I) (X+8) (X - 10) (II) (X+4) (X+10)

\huge\tt\underline\blue{Answer </p><p> }

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

════════════XXX═════════════

solving (I)

⟹(x + 8)(x - 10)

Here this identify is used:-

⟹(x + a)(x - b) =  {x}^{2}  + (a + b)x + ab

⟹(x + 8)(x - 10) =  {x}^{2}  + (8 + ( - 10))x +  - 8 \times 10

⟹ {x}^{2}  - 2x  - 80 = 0

solving (ii)

⟹(x + 4)(x + 10)

⟹(x + 4) (x - 10) =  {x}^{2}  + (4 + ( - 10))x + 4 \times  - 10

⟹ {x}^{2}  - 6x - 40 = 0

════════════XXX═════════════

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Answered by Anonymous
2

HERE IS UR ANSWER DEAR

⟹(x+8)(x−10)

=x² +(8+(−10))x+−8×10

+(8+(−10))x+−8×10⟹ {x}^{2} - 2x - 80 = 0

⟹x² −2x−80=0

⟹(x + 4)(x + 10)

⟹(x+4)(x+10)

⟹(x+4)(x+10)⟹(x + 4) (x - 10)

= {x}^{2} + (4 + ( - 10))x + - 10

⟹(x+4)(x−10)

x² +(4+(−10))x+4×−10

+(4+(−10))x+4×−10⟹ {x}^{2} - 6x - 40 = 0

⟹x² −6x−40=0

Similar questions