Physics, asked by purohitmiraj8275, 1 year ago

Q.) what is the angle of projection for a projectile motion whose range R is n times the maximum height H ?

Answers

Answered by JunaidMirza
165
R = nH

2u²CosθSinθ/g = nu²Sin²θ/(2g)

4Cosθ = nSinθ

Tanθ = 4/n

θ = Tan⁻¹(4/n)

Angle of projection is Tan⁻¹(4/n)
Answered by nirman95
10

ANGLE IS tan^(-1)[4/n]

Range is n times the max height .

So, we can say:

R = n \times H

  • Velocity of projection be u, angle of projection is \theta , gravity is g.

 \implies  \dfrac{ {u}^{2} \sin(2 \theta)  }{g}  = n \times  \dfrac{ {u}^{2} { \sin}^{2}( \theta)  }{2g}

 \implies  \dfrac{ {u}^{2} 2\sin( \theta) \cos( \theta)   }{g}  = n \times  \dfrac{ {u}^{2} { \sin}^{2}( \theta)  }{2g}

 \implies  \dfrac{  2\sin( \theta) \cos( \theta)   }{g}  = n \times  \dfrac{  { \sin}^{2}( \theta)  }{2g}

 \implies \:  \tan( \theta)  =  \dfrac{4}{n}

 \implies \:   \theta  =  { \tan}^{ - 1} ( \dfrac{4}{n} )

So, the angle is tan^(-)[4/n]

Similar questions