Math, asked by Nishi5533, 10 months ago

Q.
What is the area of the triangle ABC with A (1, -
4),B(2, -1) and C (0, -1)
A)
2
B)
3
C)
4
D)
None of these​

Answers

Answered by Aloi99
20

Given:-

๛A=(1,-4)→(x1,y1)

๛B=(2,-1)→(x2,y2)

๛C=(0,-1)→(x3,y3)

\rule{200}{1}

To Find:-

✪The Area of the ∆le[Triangle]?

\rule{200}{1}

AnsWer:-

3 sq.units or Option B)

\rule{200}{1}

Explanation:

✪Using Area of Triangle formula✪

➜½×[x1(y2-y3)+x2(y3-y1)+x3(y1-y2)]

♦Putting the Value♦

↝½[1(-1-(-1)+2(-1-(-4)+0(-4-(-1)]

↝½[1(-1+1)+2(-1+4)+0(-4+1)]

↝½[0+6+0]

↝½×6

 \frac{\cancel{6}}{\cancel{2}}

3sq.units


RvChaudharY50: Cool.
BrainIyMSDhoni: Great :)
Answered by Anonymous
17

Given:

Coordinates of ∆ABC are:

◾️A(1,-4)

◾️B(2,-1)

◾️C(0,-1)

To Find :

Area of ∆ABC

Formula Used:

 \sf \: Area  \: of \: triangle =   \frac{1}{2}\times[ {x</u><u>_</u><u>{</u><u>1</u><u>}</u><u>(y_{2} - y_{3}) + x_{2}(y_{3} - y_{</u><u>1</u><u>}</u><u>) + x</u><u>_</u><u>{</u><u>3</u><u>}</u><u>(</u><u>y</u><u>_</u><u>{</u><u>1</u><u>}</u><u> - y</u><u>_</u><u>{</u><u>2</u><u>}</u><u>)} ]

Solution:

Let's consider the coordinates as :

A(1,-4) as (x1,y1)

B(2,-1) as (x2,y2)

C(0,-1) as (x3,y3)

Calculation:

  \rightarrow \: \sf \: Area =  \frac{1}{2}  \times[1( - 1  + 1) + 2( - 1 + 4) + 0 ]\\  \\ \rightarrow \sf \: Area =  \frac{1}{\cancel2}  \times \cancel6 \\  \\ \rightarrow \sf \: Area = 3 \: square \: units

Therefore, the area of ∆ABC is 3 square units. So, correct option is (B).


RvChaudharY50: Nice.
BrainIyMSDhoni: Great :)
Similar questions
Math, 10 months ago