Math, asked by divyashelar, 5 months ago

Q. x² + 1/x(x²-1) resolve this in partial fraction
step by step solution​

Answers

Answered by mathdude500
3

Resolve in to partial fraction

\bf \:\dfrac{ {x}^{2} + 1 }{x( {x}^{2}  - 1)}

Step by step explanation :-

\large\underline{\bold{❥︎Step :- 1 }}

 \: \bf \:\dfrac{ {x}^{2} + 1 }{x( {x}^{2}  - 1)} = \bf \:\dfrac{ {x}^{2} + 1 }{x( {x}  - 1)(x + 1)}

\bf \:Let \: \bf \:\dfrac{ {x}^{2} + 1 }{x( {x}  - 1)(x + 1)} = \dfrac{A}{x}  + \dfrac{B}{x - 1}  + \dfrac{C}{x + 1} \sf \:  ⟼ \: (1)

Taking x(x - 1)(x + 1) on both sides, we get

\sf \:   {x}^{2}  + 1 = A(x - 1)(x + 1) + B(x)(x + 1) + C(x)(x - 1)\sf \:  ⟼(2)

\large\underline{\bold{❥︎Step :- 2 }}

\sf \:  ⟼On \:  substituting  \: x = 0,  \: in \:  equation \:  (2),  \: we \:  get

\sf \:  ⟼1 = A( 0- 1)(0 + 1)

\bf\implies \:A =  - 1 \: \bf \:  ⟼ (3)

\large\underline{\bold{❥︎Step :- 3 }}

\sf \:  ⟼On  \: substituting \:  x = 1, in \:  equation \:  (2),  \: we \:  get

\sf \:  ⟼ 1 + 1 = B(1)(1 + 1)

\bf\implies \:B \:  =  \: 1 \: \bf \:  ⟼ (4)

\large\underline{\bold{❥︎Step :- 4 }}

\sf \:  ⟼On  \: substituting  \: x =  - 1,  \: in  \: equation \:  (2), \:  we \:  get

\sf \:  ⟼ {( - 1)}^{2}  + 1 = C( - 1)( - 1 - 1)

\sf \:  ⟼2 = 2C

\bf\implies \:C = 1 \: \bf \:  ⟼ \: (5)

\large\underline{\bold{❥︎Step :- 5 }}

\sf \:  ⟼On  \: substituting  \: A, B \: and \: C \: in \:  equation (2),  \: we \:  get

\bf \ \: \bf \:\dfrac{ {x}^{2} + 1 }{x( {x}  - 1)(x + 1)} = \dfrac{ - 1}{x}  + \dfrac{1}{x - 1}  + \dfrac{1}{x + 1}

\bf \therefore \: \bf \:\dfrac{ {x}^{2} + 1 }{x( {x}^{2}   - 1)} = \dfrac{ - 1}{x}  + \dfrac{1}{x - 1}  + \dfrac{1}{x + 1}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions